amal90888 commited on
Commit
76223c2
Β·
verified Β·
1 Parent(s): a614029

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ pipeline_tag: image-segmentation
6
+ tags:
7
+ - unet
8
+ - segmentation
9
+ - medical-imaging
10
+ - covid19
11
+ - ct-scans
12
+ ---
13
+
14
+ # 🩺 UNet Model for COVID-19 CT Scan Segmentation
15
+
16
+ ## πŸ“Œ Model Overview
17
+ This UNet-based segmentation model is designed for **automated segmentation of COVID-19 infected lung regions** in **CT scans**. It enhances the classic **U-Net** with **attention mechanisms** to improve focus on infected regions.
18
+
19
+ - **Architecture:** UNet + Attention Gates
20
+ - **Dataset:** COVID-19 CT scans from **Coronacases.org, Radiopaedia.org, and Zenodo Repository**
21
+ - **Task:** Image Segmentation (Lung Infection)
22
+ - **Metrics:** Dice Coefficient, IoU, Hausdorff Distance, ASSD
23
+
24
+ ---
25
+
26
+ ## πŸ“Š Training Details
27
+ - **Dataset Size:** 20 CT scans (512 Γ— 512 Γ— 301 slices)
28
+ - **Preprocessing:**
29
+ - Normalization of pixel intensities `[0,1]`
30
+ - HU Thresholding: `[-1000, 1500]`
31
+ - Image resizing to `128 Γ— 128 pixels`
32
+ - Binarization of masks (0 = background, 1 = infected regions)
33
+ - **Augmentation:**
34
+ - **Rotations**: Β±5 degrees
35
+ - **Elastic transformations, Gaussian blur**
36
+ - **Brightness/contrast variations**
37
+ - Final dataset: **2,252 CT slices**
38
+ - **Training:**
39
+ - **Optimizer:** Adam (`learning rate = 1e-4`)
40
+ - **Loss Function:** Weighted BCE-Dice Loss + Surface Loss
41
+ - **Batch Size:** 16
42
+ - **Epochs:** 25
43
+ - **Training Platform:** NVIDIA Tesla T4 (Google Colab Pro)
44
+
45
+ ---
46
+
47
+ ## πŸš€ Model Performance
48
+ | Metric | Non-Augmented Model | Augmented Model |
49
+ |----------------------------|---------------------|-----------------|
50
+ | **Dice Coefficient** | 0.8502 | **0.8658** |
51
+ | **IoU (Mean)** | 0.7445 | **0.8316** |
52
+ | **ASSD (Symmetric Distance)** | 0.3907 | **0.3888** |
53
+ | **Hausdorff Distance** | 8.4853 | **9.8995** |
54
+ | **ROC AUC Score** | 0.91 | **1.00** |
55
+
56
+ πŸ“Œ **Key Findings:**
57
+ βœ” **Augmentation improved segmentation accuracy significantly**
58
+ βœ” **Attention U-Net outperformed other segmentation models**
59
+
60
+ ---
61
+
62
+ ## πŸ“₯ **How to Use the Model**
63
+ ### **1️⃣ Load the Model**
64
+ #### **TensorFlow/Keras**
65
+ ```python
66
+ from huggingface_hub import hf_hub_download
67
+ from tensorflow.keras.models import load_model
68
+
69
+ model_path = hf_hub_download(repo_id="amal90888/unet-segmentation-model", filename="unet_model.keras")
70
+ unet = load_model(model_path)