Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
---
|
2 |
library_name: sentence-transformers
|
3 |
pipeline_tag: sentence-similarity
|
@@ -5,78 +6,99 @@ tags:
|
|
5 |
- sentence-transformers
|
6 |
- feature-extraction
|
7 |
- sentence-similarity
|
8 |
-
|
|
|
|
|
9 |
---
|
10 |
|
11 |
-
#
|
|
|
|
|
12 |
|
13 |
-
|
14 |
|
15 |
-
|
|
|
|
|
|
|
16 |
|
17 |
-
|
18 |
|
19 |
-
|
20 |
|
21 |
-
|
|
|
|
|
22 |
pip install -U sentence-transformers
|
23 |
```
|
24 |
|
25 |
-
Then you can use the model like this:
|
26 |
-
|
27 |
```python
|
28 |
from sentence_transformers import SentenceTransformer
|
29 |
-
sentences = ["This is an example sentence", "Each sentence is converted"]
|
30 |
|
31 |
-
model = SentenceTransformer('
|
32 |
-
|
33 |
-
|
|
|
|
|
|
|
34 |
```
|
35 |
|
|
|
|
|
|
|
36 |
|
|
|
37 |
|
38 |
-
|
|
|
|
|
|
|
39 |
|
40 |
-
|
41 |
|
42 |
-
|
43 |
|
|
|
44 |
|
45 |
-
|
46 |
-
The model was trained with the parameters:
|
47 |
|
48 |
-
**DataLoader
|
49 |
|
50 |
`torch.utils.data.dataloader.DataLoader` of length 409 with parameters:
|
51 |
-
|
|
|
52 |
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
53 |
```
|
54 |
|
55 |
-
**Loss
|
56 |
-
|
57 |
-
`sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss`
|
58 |
|
59 |
-
|
|
|
60 |
```
|
|
|
|
|
|
|
|
|
61 |
{
|
62 |
"epochs": 5,
|
63 |
"evaluation_steps": 100,
|
64 |
-
"evaluator": "
|
65 |
"max_grad_norm": 1,
|
66 |
-
"optimizer_class": "
|
67 |
"optimizer_params": {
|
68 |
"lr": 2e-05
|
69 |
},
|
70 |
"scheduler": "WarmupLinear",
|
71 |
-
"steps_per_epoch": null,
|
72 |
"warmup_steps": 100,
|
73 |
"weight_decay": 0.01
|
74 |
}
|
75 |
```
|
76 |
|
|
|
77 |
|
78 |
-
##
|
79 |
-
|
|
|
80 |
SentenceTransformer(
|
81 |
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
82 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
@@ -84,6 +106,11 @@ SentenceTransformer(
|
|
84 |
)
|
85 |
```
|
86 |
|
87 |
-
|
|
|
|
|
88 |
|
89 |
-
|
|
|
|
|
|
|
|
1 |
+
```markdown
|
2 |
---
|
3 |
library_name: sentence-transformers
|
4 |
pipeline_tag: sentence-similarity
|
|
|
6 |
- sentence-transformers
|
7 |
- feature-extraction
|
8 |
- sentence-similarity
|
9 |
+
- job-matching
|
10 |
+
- skill-similarity
|
11 |
+
- embeddings
|
12 |
---
|
13 |
|
14 |
+
# alvperez/skill-sim-model
|
15 |
+
|
16 |
+
This is a fine-tuned [sentence-transformers](https://www.SBERT.net) model for **skill similarity** and **job matching**. It maps short skill phrases (e.g., `Python`, `Forklift Operation`, `Electrical Wiring`) into a 768-dimensional embedding space, where semantically related skills are closer together.
|
17 |
|
18 |
+
It can be used for:
|
19 |
|
20 |
+
- Matching candidates to job requirements
|
21 |
+
- Measuring similarity between skills
|
22 |
+
- Clustering and grouping skill sets
|
23 |
+
- Resume parsing or job recommendation systems
|
24 |
|
25 |
+
---
|
26 |
|
27 |
+
## 🧪 Usage (Sentence-Transformers)
|
28 |
|
29 |
+
To use this model:
|
30 |
+
|
31 |
+
```bash
|
32 |
pip install -U sentence-transformers
|
33 |
```
|
34 |
|
|
|
|
|
35 |
```python
|
36 |
from sentence_transformers import SentenceTransformer
|
|
|
37 |
|
38 |
+
model = SentenceTransformer('alvperez/skill-sim-model')
|
39 |
+
|
40 |
+
skills = ["Electrical Wiring", "Circuit Troubleshooting", "Machine Learning"]
|
41 |
+
embeddings = model.encode(skills)
|
42 |
+
|
43 |
+
print(embeddings.shape) # (3, 768)
|
44 |
```
|
45 |
|
46 |
+
---
|
47 |
+
|
48 |
+
## 🧭 Evaluation Results
|
49 |
|
50 |
+
The model was evaluated on a labeled skill similarity dataset using the following metrics:
|
51 |
|
52 |
+
| Metric | Value |
|
53 |
+
|----------------------|---------|
|
54 |
+
| Spearman Correlation | 0.8612 |
|
55 |
+
| ROC AUC | 0.9127 |
|
56 |
|
57 |
+
These scores indicate strong alignment with human-labeled skill similarity ratings.
|
58 |
|
59 |
+
---
|
60 |
|
61 |
+
## 🧠 Training Details
|
62 |
|
63 |
+
The model was fine-tuned on a custom skill similarity dataset using `CosineSimilarityLoss`.
|
|
|
64 |
|
65 |
+
### **DataLoader**
|
66 |
|
67 |
`torch.utils.data.dataloader.DataLoader` of length 409 with parameters:
|
68 |
+
|
69 |
+
```python
|
70 |
{'batch_size': 32, 'sampler': 'torch.utils.data.sampler.RandomSampler', 'batch_sampler': 'torch.utils.data.sampler.BatchSampler'}
|
71 |
```
|
72 |
|
73 |
+
### **Loss**
|
|
|
|
|
74 |
|
75 |
+
```python
|
76 |
+
sentence_transformers.losses.CosineSimilarityLoss.CosineSimilarityLoss
|
77 |
```
|
78 |
+
|
79 |
+
### **Training Parameters**
|
80 |
+
|
81 |
+
```python
|
82 |
{
|
83 |
"epochs": 5,
|
84 |
"evaluation_steps": 100,
|
85 |
+
"evaluator": "EmbeddingSimilarityEvaluator",
|
86 |
"max_grad_norm": 1,
|
87 |
+
"optimizer_class": "AdamW",
|
88 |
"optimizer_params": {
|
89 |
"lr": 2e-05
|
90 |
},
|
91 |
"scheduler": "WarmupLinear",
|
|
|
92 |
"warmup_steps": 100,
|
93 |
"weight_decay": 0.01
|
94 |
}
|
95 |
```
|
96 |
|
97 |
+
---
|
98 |
|
99 |
+
## 🧬 Model Architecture
|
100 |
+
|
101 |
+
```python
|
102 |
SentenceTransformer(
|
103 |
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
104 |
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False})
|
|
|
106 |
)
|
107 |
```
|
108 |
|
109 |
+
---
|
110 |
+
|
111 |
+
## 📚 Citation & Attribution
|
112 |
|
113 |
+
- Model fine-tuned by [@alvperez](https://huggingface.co/alvperez)
|
114 |
+
- Built with [Sentence-Transformers](https://www.sbert.net/)
|
115 |
+
- Inspired by semantic search and skill-matching use cases
|
116 |
+
```
|