Upload 2 files
Browse files- handler.py +189 -0
- requirements.txt +2 -0
handler.py
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Adapted from https://huggingface.co/nvidia/NVLM-D-72B#inference
|
2 |
+
|
3 |
+
import math
|
4 |
+
from typing import Any, Dict, List
|
5 |
+
|
6 |
+
import torch
|
7 |
+
import torchvision.transforms as T
|
8 |
+
from torchvision.transforms.functional import InterpolationMode
|
9 |
+
|
10 |
+
import requests
|
11 |
+
from io import BytesIO
|
12 |
+
from PIL import Image
|
13 |
+
|
14 |
+
from transformers import AutoTokenizer, AutoModel
|
15 |
+
|
16 |
+
from huggingface_inference_toolkit.logging import logger
|
17 |
+
|
18 |
+
|
19 |
+
def find_closest_aspect_ratio(aspect_ratio, target_ratios, width, height, image_size):
|
20 |
+
best_ratio_diff = float("inf")
|
21 |
+
best_ratio = (1, 1)
|
22 |
+
area = width * height
|
23 |
+
for ratio in target_ratios:
|
24 |
+
target_aspect_ratio = ratio[0] / ratio[1]
|
25 |
+
ratio_diff = abs(aspect_ratio - target_aspect_ratio)
|
26 |
+
if ratio_diff < best_ratio_diff:
|
27 |
+
best_ratio_diff = ratio_diff
|
28 |
+
best_ratio = ratio
|
29 |
+
elif ratio_diff == best_ratio_diff:
|
30 |
+
if area > 0.5 * image_size * image_size * ratio[0] * ratio[1]:
|
31 |
+
best_ratio = ratio
|
32 |
+
return best_ratio
|
33 |
+
|
34 |
+
|
35 |
+
def dynamic_preprocess(
|
36 |
+
image, min_num=1, max_num=12, image_size=448, use_thumbnail=False
|
37 |
+
):
|
38 |
+
orig_width, orig_height = image.size
|
39 |
+
aspect_ratio = orig_width / orig_height
|
40 |
+
|
41 |
+
# calculate the existing image aspect ratio
|
42 |
+
target_ratios = set(
|
43 |
+
(i, j)
|
44 |
+
for n in range(min_num, max_num + 1)
|
45 |
+
for i in range(1, n + 1)
|
46 |
+
for j in range(1, n + 1)
|
47 |
+
if i * j <= max_num and i * j >= min_num
|
48 |
+
)
|
49 |
+
target_ratios = sorted(target_ratios, key=lambda x: x[0] * x[1])
|
50 |
+
|
51 |
+
# find the closest aspect ratio to the target
|
52 |
+
target_aspect_ratio = find_closest_aspect_ratio(
|
53 |
+
aspect_ratio,
|
54 |
+
target_ratios,
|
55 |
+
orig_width,
|
56 |
+
orig_height,
|
57 |
+
image_size,
|
58 |
+
)
|
59 |
+
|
60 |
+
# calculate the target width and height
|
61 |
+
target_width = image_size * target_aspect_ratio[0]
|
62 |
+
target_height = image_size * target_aspect_ratio[1]
|
63 |
+
blocks = target_aspect_ratio[0] * target_aspect_ratio[1]
|
64 |
+
|
65 |
+
# resize the image
|
66 |
+
resized_img = image.resize((target_width, target_height))
|
67 |
+
processed_images = []
|
68 |
+
for i in range(blocks):
|
69 |
+
box = (
|
70 |
+
(i % (target_width // image_size)) * image_size,
|
71 |
+
(i // (target_width // image_size)) * image_size,
|
72 |
+
((i % (target_width // image_size)) + 1) * image_size,
|
73 |
+
((i // (target_width // image_size)) + 1) * image_size,
|
74 |
+
)
|
75 |
+
# split the image
|
76 |
+
split_img = resized_img.crop(box)
|
77 |
+
processed_images.append(split_img)
|
78 |
+
assert len(processed_images) == blocks
|
79 |
+
if use_thumbnail and len(processed_images) != 1:
|
80 |
+
thumbnail_img = image.resize((image_size, image_size))
|
81 |
+
processed_images.append(thumbnail_img)
|
82 |
+
return processed_images
|
83 |
+
|
84 |
+
|
85 |
+
def load_image(image_url, input_size=448, max_num=12):
|
86 |
+
response = requests.get(image_url)
|
87 |
+
image = Image.open(BytesIO(response.content)).convert("RGB")
|
88 |
+
transform = build_transform(input_size=input_size)
|
89 |
+
images = dynamic_preprocess(
|
90 |
+
image, image_size=input_size, use_thumbnail=True, max_num=max_num
|
91 |
+
)
|
92 |
+
pixel_values = [transform(image) for image in images]
|
93 |
+
pixel_values = torch.stack(pixel_values)
|
94 |
+
return pixel_values
|
95 |
+
|
96 |
+
|
97 |
+
def split_model():
|
98 |
+
device_map = {}
|
99 |
+
world_size = torch.cuda.device_count()
|
100 |
+
num_layers = 80
|
101 |
+
# Since the first GPU will be used for ViT, treat it as half a GPU.
|
102 |
+
num_layers_per_gpu = math.ceil(num_layers / (world_size - 0.5))
|
103 |
+
num_layers_per_gpu = [num_layers_per_gpu] * world_size
|
104 |
+
num_layers_per_gpu[0] = math.ceil(num_layers_per_gpu[0] * 0.5)
|
105 |
+
layer_cnt = 0
|
106 |
+
for i, num_layer in enumerate(num_layers_per_gpu):
|
107 |
+
for j in range(num_layer):
|
108 |
+
device_map[f"language_model.model.layers.{layer_cnt}"] = i
|
109 |
+
layer_cnt += 1
|
110 |
+
device_map["vision_model"] = 0
|
111 |
+
device_map["mlp1"] = 0
|
112 |
+
device_map["language_model.model.tok_embeddings"] = 0
|
113 |
+
device_map["language_model.model.embed_tokens"] = 0
|
114 |
+
device_map["language_model.output"] = 0
|
115 |
+
device_map["language_model.model.norm"] = 0
|
116 |
+
device_map["language_model.lm_head"] = 0
|
117 |
+
device_map[f"language_model.model.layers.{num_layers - 1}"] = 0
|
118 |
+
|
119 |
+
return device_map
|
120 |
+
|
121 |
+
|
122 |
+
IMAGENET_MEAN = (0.485, 0.456, 0.406)
|
123 |
+
IMAGENET_STD = (0.229, 0.224, 0.225)
|
124 |
+
|
125 |
+
|
126 |
+
def build_transform(input_size):
|
127 |
+
MEAN, STD = IMAGENET_MEAN, IMAGENET_STD
|
128 |
+
transform = T.Compose(
|
129 |
+
[
|
130 |
+
T.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
|
131 |
+
T.Resize((input_size, input_size), interpolation=InterpolationMode.BICUBIC),
|
132 |
+
T.ToTensor(),
|
133 |
+
T.Normalize(mean=MEAN, std=STD),
|
134 |
+
]
|
135 |
+
)
|
136 |
+
return transform
|
137 |
+
|
138 |
+
|
139 |
+
class EndpointHandler:
|
140 |
+
def __init__(self, model_dir: str, **kwargs: Any) -> None:
|
141 |
+
self.model = AutoModel.from_pretrained(
|
142 |
+
model_dir,
|
143 |
+
torch_dtype=torch.bfloat16,
|
144 |
+
low_cpu_mem_usage=True,
|
145 |
+
use_flash_attn=False,
|
146 |
+
trust_remote_code=True,
|
147 |
+
device_map=split_model(),
|
148 |
+
).eval()
|
149 |
+
|
150 |
+
self.tokenizer = AutoTokenizer.from_pretrained(
|
151 |
+
model_dir, trust_remote_code=True, use_fast=False
|
152 |
+
)
|
153 |
+
|
154 |
+
def __call__(self, data: Dict[str, Any]) -> Dict[str, List[Any]]:
|
155 |
+
if "instances" not in data:
|
156 |
+
raise ValueError(
|
157 |
+
"The request body must contain a key 'instances' with a list of instances."
|
158 |
+
)
|
159 |
+
|
160 |
+
logger.debug(f"Received incoming request with {data=}")
|
161 |
+
|
162 |
+
predictions = []
|
163 |
+
for input in data["instances"]:
|
164 |
+
generation_config = dict(max_new_tokens=1024, do_sample=False)
|
165 |
+
|
166 |
+
if "image_url" not in input:
|
167 |
+
# pure-text conversation
|
168 |
+
response, history = self.model.chat(
|
169 |
+
self.tokenizer,
|
170 |
+
None,
|
171 |
+
input["prompt"],
|
172 |
+
generation_config,
|
173 |
+
history=None,
|
174 |
+
return_history=True,
|
175 |
+
)
|
176 |
+
else:
|
177 |
+
# single-image single-round conversation
|
178 |
+
pixel_values = load_image(input["image_url"], max_num=6).to(
|
179 |
+
torch.bfloat16
|
180 |
+
)
|
181 |
+
response = self.model.chat(
|
182 |
+
self.tokenizer,
|
183 |
+
pixel_values,
|
184 |
+
f"<image>\n{input['prompt']}",
|
185 |
+
generation_config,
|
186 |
+
)
|
187 |
+
|
188 |
+
predictions.append(response)
|
189 |
+
return {"predictions": predictions}
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
einops
|
2 |
+
timm
|