|
|
|
|
|
|
|
import os |
|
from logging import getLogger |
|
from typing import List |
|
|
|
from sentencepiece import SentencePieceProcessor |
|
|
|
|
|
logger = getLogger() |
|
|
|
|
|
class Tokenizer: |
|
"""tokenizing and encoding/decoding text using SentencePiece.""" |
|
def __init__(self, model_path: str): |
|
""" |
|
Initializes the Tokenizer with a SentencePiece model. |
|
|
|
Args: |
|
model_path (str): The path to the SentencePiece model file. |
|
""" |
|
|
|
assert os.path.isfile(model_path), model_path |
|
self.sp_model = SentencePieceProcessor(model_file=model_path) |
|
logger.info(f"Reloaded SentencePiece model from {model_path}") |
|
|
|
|
|
self.n_words: int = self.sp_model.vocab_size() |
|
self.bos_id: int = self.sp_model.bos_id() |
|
self.eos_id: int = self.sp_model.eos_id() |
|
self.pad_id: int = self.sp_model.pad_id() |
|
logger.info( |
|
f"#words: {self.n_words} - BOS ID: {self.bos_id} - EOS ID: {self.eos_id}" |
|
) |
|
assert self.sp_model.vocab_size() == self.sp_model.get_piece_size() |
|
|
|
def encode(self, s: str, bos: bool, eos: bool) -> List[int]: |
|
""" |
|
Encodes a string into a list of token IDs. |
|
|
|
Args: |
|
s (str): The input string to be encoded. |
|
bos (bool): Whether to prepend the beginning-of-sequence token. |
|
eos (bool): Whether to append the end-of-sequence token. |
|
|
|
Returns: |
|
List[int]: A list of token IDs. |
|
""" |
|
assert type(s) is str |
|
t = self.sp_model.encode(s) |
|
if bos: |
|
t = [self.bos_id] + t |
|
if eos: |
|
t = t + [self.eos_id] |
|
return t |
|
|
|
def decode(self, t: List[int]) -> str: |
|
""" |
|
Decodes a list of token IDs into a string. |
|
|
|
Args: |
|
t (List[int]): The list of token IDs to be decoded. |
|
|
|
Returns: |
|
str: The decoded string. |
|
""" |
|
return self.sp_model.decode(t) |
|
|