|
|
|
|
|
|
|
import math |
|
from dataclasses import dataclass |
|
from typing import Optional, Tuple |
|
|
|
import fairscale.nn.model_parallel.initialize as fs_init |
|
import torch |
|
import torch.nn.functional as F |
|
from fairscale.nn.model_parallel.layers import ( |
|
ColumnParallelLinear, |
|
ParallelEmbedding, |
|
RowParallelLinear, |
|
) |
|
from torch import nn |
|
|
|
|
|
@dataclass |
|
class ModelArgs: |
|
dim: int = 4096 |
|
n_layers: int = 32 |
|
n_heads: int = 32 |
|
n_kv_heads: Optional[int] = None |
|
vocab_size: int = -1 |
|
multiple_of: int = 256 |
|
ffn_dim_multiplier: Optional[float] = None |
|
norm_eps: float = 1e-5 |
|
n_future_tokens: int = 1 |
|
rope_theta: float = 10000.0 |
|
|
|
max_batch_size: int = 32 |
|
max_seq_len: int = 2048 |
|
|
|
|
|
class RMSNorm(torch.nn.Module): |
|
def __init__(self, dim: int, eps: float = 1e-6): |
|
""" |
|
Initialize the RMSNorm normalization layer. |
|
|
|
Args: |
|
dim (int): The dimension of the input tensor. |
|
eps (float, optional): A small value added to the denominator for numerical stability. Default is 1e-6. |
|
|
|
Attributes: |
|
eps (float): A small value added to the denominator for numerical stability. |
|
weight (nn.Parameter): Learnable scaling parameter. |
|
|
|
""" |
|
super().__init__() |
|
self.eps = eps |
|
self.weight = nn.Parameter(torch.ones(dim)) |
|
|
|
def _norm(self, x): |
|
""" |
|
Apply the RMSNorm normalization to the input tensor. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor. |
|
|
|
Returns: |
|
torch.Tensor: The normalized tensor. |
|
|
|
""" |
|
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps) |
|
|
|
def forward(self, x): |
|
""" |
|
Forward pass through the RMSNorm layer. |
|
|
|
Args: |
|
x (torch.Tensor): The input tensor. |
|
|
|
Returns: |
|
torch.Tensor: The output tensor after applying RMSNorm. |
|
|
|
""" |
|
output = self._norm(x.float()).type_as(x) |
|
return output * self.weight |
|
|
|
|
|
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0): |
|
""" |
|
Precompute the frequency tensor for complex exponentials (cis) with given dimensions. |
|
|
|
This function calculates a frequency tensor with complex exponentials using the given dimension 'dim' |
|
and the end index 'end'. The 'theta' parameter scales the frequencies. |
|
The returned tensor contains complex values in complex64 data type. |
|
|
|
Args: |
|
dim (int): Dimension of the frequency tensor. |
|
end (int): End index for precomputing frequencies. |
|
theta (float, optional): Scaling factor for frequency computation. Defaults to 10000.0. |
|
|
|
Returns: |
|
torch.Tensor: Precomputed frequency tensor with complex exponentials. |
|
|
|
|
|
|
|
|
|
""" |
|
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) |
|
t = torch.arange(end, device=freqs.device) |
|
freqs = torch.outer(t, freqs).float() |
|
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) |
|
return freqs_cis |
|
|
|
|
|
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor): |
|
""" |
|
Reshape frequency tensor for broadcasting it with another tensor. |
|
|
|
This function reshapes the frequency tensor to have the same shape as the target tensor 'x' |
|
for the purpose of broadcasting the frequency tensor during element-wise operations. |
|
|
|
Args: |
|
freqs_cis (torch.Tensor): Frequency tensor to be reshaped. |
|
x (torch.Tensor): Target tensor for broadcasting compatibility. |
|
|
|
Returns: |
|
torch.Tensor: Reshaped frequency tensor. |
|
|
|
Raises: |
|
AssertionError: If the frequency tensor doesn't match the expected shape. |
|
AssertionError: If the target tensor 'x' doesn't have the expected number of dimensions. |
|
""" |
|
ndim = x.ndim |
|
assert 0 <= 1 < ndim |
|
assert freqs_cis.shape == (x.shape[1], x.shape[-1]) |
|
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] |
|
return freqs_cis.view(*shape) |
|
|
|
|
|
def apply_rotary_emb( |
|
xq: torch.Tensor, |
|
xk: torch.Tensor, |
|
freqs_cis: torch.Tensor, |
|
) -> Tuple[torch.Tensor, torch.Tensor]: |
|
""" |
|
Apply rotary embeddings to input tensors using the given frequency tensor. |
|
|
|
This function applies rotary embeddings to the given query 'xq' and key 'xk' tensors using the provided |
|
frequency tensor 'freqs_cis'. The input tensors are reshaped as complex numbers, and the frequency tensor |
|
is reshaped for broadcasting compatibility. The resulting tensors contain rotary embeddings and are |
|
returned as real tensors. |
|
|
|
Args: |
|
xq (torch.Tensor): Query tensor to apply rotary embeddings. |
|
xk (torch.Tensor): Key tensor to apply rotary embeddings. |
|
freqs_cis (torch.Tensor): Precomputed frequency tensor for complex exponentials. |
|
|
|
Returns: |
|
Tuple[torch.Tensor, torch.Tensor]: Tuple of modified query tensor and key tensor with rotary embeddings. |
|
|
|
|
|
|
|
""" |
|
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) |
|
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2)) |
|
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) |
|
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) |
|
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3) |
|
return xq_out.type_as(xq), xk_out.type_as(xk) |
|
|
|
|
|
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor: |
|
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)""" |
|
bs, slen, n_kv_heads, head_dim = x.shape |
|
if n_rep == 1: |
|
return x |
|
return ( |
|
x[:, :, :, None, :] |
|
.expand(bs, slen, n_kv_heads, n_rep, head_dim) |
|
.reshape(bs, slen, n_kv_heads * n_rep, head_dim) |
|
) |
|
|
|
|
|
class Attention(nn.Module): |
|
"""Multi-head attention module.""" |
|
def __init__(self, args: ModelArgs): |
|
""" |
|
Initialize the Attention module. |
|
|
|
Args: |
|
args (ModelArgs): Model configuration parameters. |
|
|
|
Attributes: |
|
n_kv_heads (int): Number of key and value heads. |
|
n_local_heads (int): Number of local query heads. |
|
n_local_kv_heads (int): Number of local key and value heads. |
|
n_rep (int): Number of repetitions for local heads. |
|
head_dim (int): Dimension size of each attention head. |
|
wq (ColumnParallelLinear): Linear transformation for queries. |
|
wk (ColumnParallelLinear): Linear transformation for keys. |
|
wv (ColumnParallelLinear): Linear transformation for values. |
|
wo (RowParallelLinear): Linear transformation for output. |
|
cache_k (torch.Tensor): Cached keys for attention. |
|
cache_v (torch.Tensor): Cached values for attention. |
|
|
|
""" |
|
super().__init__() |
|
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads |
|
model_parallel_size = fs_init.get_model_parallel_world_size() |
|
self.n_local_heads = args.n_heads // model_parallel_size |
|
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size |
|
self.n_rep = self.n_local_heads // self.n_local_kv_heads |
|
self.head_dim = args.dim // args.n_heads |
|
|
|
self.wq = ColumnParallelLinear( |
|
args.dim, |
|
args.n_heads * self.head_dim, |
|
bias=False, |
|
gather_output=False, |
|
init_method=lambda x: x, |
|
) |
|
self.wk = ColumnParallelLinear( |
|
args.dim, |
|
self.n_kv_heads * self.head_dim, |
|
bias=False, |
|
gather_output=False, |
|
init_method=lambda x: x, |
|
) |
|
self.wv = ColumnParallelLinear( |
|
args.dim, |
|
self.n_kv_heads * self.head_dim, |
|
bias=False, |
|
gather_output=False, |
|
init_method=lambda x: x, |
|
) |
|
self.wo = RowParallelLinear( |
|
args.n_heads * self.head_dim, |
|
args.dim, |
|
bias=False, |
|
input_is_parallel=True, |
|
init_method=lambda x: x, |
|
) |
|
|
|
self.cache_k = torch.zeros( |
|
( |
|
args.max_batch_size, |
|
args.max_seq_len, |
|
self.n_local_kv_heads, |
|
self.head_dim, |
|
) |
|
).cuda() |
|
self.cache_v = torch.zeros( |
|
( |
|
args.max_batch_size, |
|
args.max_seq_len, |
|
self.n_local_kv_heads, |
|
self.head_dim, |
|
) |
|
).cuda() |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
start_pos: int, |
|
freqs_cis: torch.Tensor, |
|
mask: Optional[torch.Tensor], |
|
): |
|
""" |
|
Forward pass of the attention module. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
start_pos (int): Starting position for caching. |
|
freqs_cis (torch.Tensor): Precomputed frequency tensor. |
|
mask (torch.Tensor, optional): Attention mask tensor. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor after attention. |
|
|
|
""" |
|
bsz, seqlen, _ = x.shape |
|
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x) |
|
|
|
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim) |
|
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) |
|
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim) |
|
|
|
xq, xk = apply_rotary_emb(xq, xk, freqs_cis=freqs_cis) |
|
|
|
self.cache_k = self.cache_k.to(xq) |
|
self.cache_v = self.cache_v.to(xq) |
|
|
|
self.cache_k[:bsz, start_pos : start_pos + seqlen] = xk |
|
self.cache_v[:bsz, start_pos : start_pos + seqlen] = xv |
|
|
|
keys = self.cache_k[:bsz, : start_pos + seqlen] |
|
values = self.cache_v[:bsz, : start_pos + seqlen] |
|
|
|
|
|
keys = repeat_kv(keys, self.n_rep) |
|
values = repeat_kv(values, self.n_rep) |
|
|
|
xq = xq.transpose(1, 2) |
|
keys = keys.transpose(1, 2) |
|
values = values.transpose(1, 2) |
|
scores = torch.matmul(xq, keys.transpose(2, 3)) / math.sqrt(self.head_dim) |
|
if mask is not None: |
|
scores = scores + mask |
|
scores = F.softmax(scores.float(), dim=-1).type_as(xq) |
|
output = torch.matmul(scores, values) |
|
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1) |
|
return self.wo(output) |
|
|
|
|
|
class FeedForward(nn.Module): |
|
def __init__( |
|
self, |
|
dim: int, |
|
hidden_dim: int, |
|
multiple_of: int, |
|
ffn_dim_multiplier: Optional[float], |
|
): |
|
""" |
|
Initialize the FeedForward module. |
|
|
|
Args: |
|
dim (int): Input dimension. |
|
hidden_dim (int): Hidden dimension of the feedforward layer. |
|
multiple_of (int): Value to ensure hidden dimension is a multiple of this value. |
|
ffn_dim_multiplier (float, optional): Custom multiplier for hidden dimension. Defaults to None. |
|
|
|
Attributes: |
|
w1 (ColumnParallelLinear): Linear transformation for the first layer. |
|
w2 (RowParallelLinear): Linear transformation for the second layer. |
|
w3 (ColumnParallelLinear): Linear transformation for the third layer. |
|
|
|
""" |
|
super().__init__() |
|
hidden_dim = int(2 * hidden_dim / 3) |
|
|
|
if ffn_dim_multiplier is not None: |
|
hidden_dim = int(ffn_dim_multiplier * hidden_dim) |
|
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of) |
|
|
|
self.w1 = ColumnParallelLinear( |
|
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x |
|
) |
|
self.w2 = RowParallelLinear( |
|
hidden_dim, dim, bias=False, input_is_parallel=True, init_method=lambda x: x |
|
) |
|
self.w3 = ColumnParallelLinear( |
|
dim, hidden_dim, bias=False, gather_output=False, init_method=lambda x: x |
|
) |
|
|
|
def forward(self, x): |
|
return self.w2(F.silu(self.w1(x)) * self.w3(x)) |
|
|
|
|
|
class TransformerBlock(nn.Module): |
|
def __init__(self, layer_id: int, args: ModelArgs): |
|
""" |
|
Initialize a TransformerBlock. |
|
|
|
Args: |
|
layer_id (int): Identifier for the layer. |
|
args (ModelArgs): Model configuration parameters. |
|
|
|
Attributes: |
|
n_heads (int): Number of attention heads. |
|
dim (int): Dimension size of the model. |
|
head_dim (int): Dimension size of each attention head. |
|
attention (Attention): Attention module. |
|
feed_forward (FeedForward): FeedForward module. |
|
layer_id (int): Identifier for the layer. |
|
attention_norm (RMSNorm): Layer normalization for attention output. |
|
ffn_norm (RMSNorm): Layer normalization for feedforward output. |
|
|
|
""" |
|
super().__init__() |
|
self.n_heads = args.n_heads |
|
self.dim = args.dim |
|
self.head_dim = args.dim // args.n_heads |
|
self.attention = Attention(args) |
|
self.feed_forward = FeedForward( |
|
dim=args.dim, |
|
hidden_dim=4 * args.dim, |
|
multiple_of=args.multiple_of, |
|
ffn_dim_multiplier=args.ffn_dim_multiplier, |
|
) |
|
self.layer_id = layer_id |
|
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps) |
|
|
|
def forward( |
|
self, |
|
x: torch.Tensor, |
|
start_pos: int, |
|
freqs_cis: torch.Tensor, |
|
mask: Optional[torch.Tensor], |
|
): |
|
""" |
|
Perform a forward pass through the TransformerBlock. |
|
|
|
Args: |
|
x (torch.Tensor): Input tensor. |
|
start_pos (int): Starting position for attention caching. |
|
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies. |
|
mask (torch.Tensor, optional): Masking tensor for attention. Defaults to None. |
|
|
|
Returns: |
|
torch.Tensor: Output tensor after applying attention and feedforward layers. |
|
|
|
""" |
|
h = x + self.attention( |
|
self.attention_norm(x), start_pos, freqs_cis, mask |
|
) |
|
out = h + self.feed_forward(self.ffn_norm(h)) |
|
return out |
|
|
|
|
|
class Transformer(nn.Module): |
|
def __init__(self, params: ModelArgs): |
|
""" |
|
Initialize a Transformer model. |
|
|
|
Args: |
|
params (ModelArgs): Model configuration parameters. |
|
|
|
Attributes: |
|
params (ModelArgs): Model configuration parameters. |
|
vocab_size (int): Vocabulary size. |
|
n_layers (int): Total number of layers in the model (including extra heads). |
|
n_future_tokens (int): Number of prediction heads in the model (= 1 + `len(extra_heads)`). |
|
tok_embeddings (ParallelEmbedding): Token embeddings. |
|
layers (torch.nn.ModuleList): List of Transformer blocks (trunk + next-token head). |
|
extra_heads (torch.nn.ModuleList): List of Transformer blocks |
|
(additional prediction heads for multi-token prediction). |
|
norm (RMSNorm): Layer normalization for the model output. |
|
output (ColumnParallelLinear): Linear layer for final output. |
|
freqs_cis (torch.Tensor): Precomputed cosine and sine frequencies. |
|
|
|
""" |
|
super().__init__() |
|
self.params = params |
|
self.vocab_size = params.vocab_size |
|
self.n_layers = params.n_layers |
|
self.n_future_tokens = params.n_future_tokens |
|
|
|
self.tok_embeddings = ParallelEmbedding( |
|
params.vocab_size, params.dim, init_method=lambda x: x |
|
) |
|
|
|
self.layers = torch.nn.ModuleList() |
|
for layer_id in range(params.n_layers - self.n_future_tokens + 1): |
|
self.layers.append(TransformerBlock(layer_id, params)) |
|
|
|
|
|
|
|
self.extra_heads = torch.nn.ModuleList() |
|
for layer_id in range(self.n_layers - self.n_future_tokens + 1, self.n_layers): |
|
self.extra_heads.append(TransformerBlock(layer_id, params)) |
|
|
|
self.norm = RMSNorm(params.dim, eps=params.norm_eps) |
|
self.output = ColumnParallelLinear( |
|
params.dim, params.vocab_size, bias=False, init_method=lambda x: x |
|
) |
|
|
|
self.freqs_cis = precompute_freqs_cis( |
|
|
|
|
|
self.params.dim // self.params.n_heads, self.params.max_seq_len * 2, theta=self.params.rope_theta |
|
) |
|
|
|
@torch.inference_mode() |
|
def forward(self, tokens: torch.Tensor, start_pos: int, return_all_heads: bool = False): |
|
""" |
|
Perform a forward pass through the Transformer model. |
|
|
|
Args: |
|
tokens (torch.Tensor): Input token indices. |
|
start_pos (int): Starting position for attention caching. |
|
return_all_heads (bool, optional): Whether to return logits |
|
for all prediction heads. Defaults to False. |
|
|
|
Returns: |
|
torch.Tensor: Output logits after applying the Transformer model |
|
of shape (batch_size, seq_len, n_future_tokens, vocab_size). |
|
|
|
Note: |
|
If return_all_heads is False, the output logits broadcast to |
|
(batch_size, seq_len, vocab_size) and are compatible with standard |
|
decoding. |
|
""" |
|
_bsz, seqlen = tokens.shape |
|
h = self.tok_embeddings(tokens) |
|
self.freqs_cis = self.freqs_cis.to(h.device) |
|
freqs_cis = self.freqs_cis[start_pos : start_pos + seqlen] |
|
|
|
mask = None |
|
if seqlen > 1: |
|
mask = torch.full( |
|
(seqlen, seqlen), float("-inf"), device=tokens.device |
|
) |
|
|
|
mask = torch.triu(mask, diagonal=1) |
|
|
|
|
|
|
|
|
|
|
|
mask = torch.hstack([ |
|
torch.zeros((seqlen, start_pos), device=tokens.device), |
|
mask |
|
]).type_as(h) |
|
|
|
|
|
for layer in self.layers[:-1]: |
|
h = layer(h, start_pos, freqs_cis, mask) |
|
h_trunk = h |
|
|
|
|
|
latents = [] |
|
n_heads_to_use = self.n_future_tokens if return_all_heads else 1 |
|
prediction_heads = [self.layers[-1]] + list(self.extra_heads) |
|
for layer in prediction_heads[:n_heads_to_use]: |
|
h = layer(h_trunk, start_pos, freqs_cis, mask) |
|
latents.append(h) |
|
|
|
h = torch.stack(latents, dim=-2) |
|
h = self.norm(h) |
|
output = self.output(h).float() |
|
return output |
|
|