Update README.md
Browse files
README.md
CHANGED
@@ -1,199 +1,99 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
library_name: transformers
|
3 |
-
tags: []
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
[
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
[More Information Needed]
|
91 |
-
|
92 |
-
|
93 |
-
#### Training Hyperparameters
|
94 |
-
|
95 |
-
- **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
96 |
-
|
97 |
-
#### Speeds, Sizes, Times [optional]
|
98 |
-
|
99 |
-
<!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
|
100 |
-
|
101 |
-
[More Information Needed]
|
102 |
-
|
103 |
-
## Evaluation
|
104 |
-
|
105 |
-
<!-- This section describes the evaluation protocols and provides the results. -->
|
106 |
-
|
107 |
-
### Testing Data, Factors & Metrics
|
108 |
-
|
109 |
-
#### Testing Data
|
110 |
-
|
111 |
-
<!-- This should link to a Dataset Card if possible. -->
|
112 |
-
|
113 |
-
[More Information Needed]
|
114 |
-
|
115 |
-
#### Factors
|
116 |
-
|
117 |
-
<!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
|
118 |
-
|
119 |
-
[More Information Needed]
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
|
|
1 |
---
|
2 |
+
license: apache-2.0
|
3 |
+
language:
|
4 |
+
- en
|
5 |
+
tags:
|
6 |
+
- moe
|
7 |
+
- olmo
|
8 |
+
- olmoe
|
9 |
+
co2_eq_emissions: 1
|
10 |
+
datasets:
|
11 |
+
- allenai/OLMoE-mix-0924
|
12 |
+
- allenai/dolmino-mix-1124
|
13 |
library_name: transformers
|
|
|
14 |
---
|
15 |
|
16 |
+
<img alt="OLMoE Logo." src="olmoe-logo.png" width="250px">
|
17 |
+
|
18 |
+
|
19 |
+
# Model Summary
|
20 |
+
|
21 |
+
> OLMoE-1B-7B is a Mixture-of-Experts LLM with 1B active and 7B total parameters released in September 2024 (0125). It yields state-of-the-art performance among models with a similar cost (1B) and is competitive with much larger models like Llama2-13B. OLMoE is 100% open-source.
|
22 |
+
|
23 |
+
This information and more can also be found on the [**OLMoE GitHub repository**](https://github.com/allenai/OLMoE).
|
24 |
+
|
25 |
+
- **Paper**: [arxiv.org/abs/2409.02060](https://arxiv.org/abs/2409.02060)
|
26 |
+
- **Pretraining** [Checkpoints](https://hf.co/allenai/OLMoE-1B-7B-0125), [Code](https://github.com/allenai/OLMo/tree/Muennighoff/MoE), [Data](https://huggingface.co/datasets/allenai/OLMoE-mix-0924) and [Logs](https://wandb.ai/ai2-llm/olmoe/reports/OLMoE-1B-7B-0924--Vmlldzo4OTcyMjU3).
|
27 |
+
- **SFT (Supervised Fine-Tuning)** [Checkpoints](https://huggingface.co/allenai/OLMoE-1B-7B-0125-SFT), [Code](https://github.com/allenai/open-instruct/tree/olmoe-sft), [Data](https://hf.co/datasets/allenai/tulu-v3.1-mix-preview-4096-OLMoE) and [Logs](https://github.com/allenai/OLMoE/blob/main/logs/olmoe-sft-logs.txt).
|
28 |
+
- **DPO/KTO (Direct Preference Optimization/Kahneman-Tversky Optimization)**, [Checkpoints](https://huggingface.co/allenai/OLMoE-1B-7B-0125-Instruct), [Preference Data](https://hf.co/datasets/allenai/ultrafeedback_binarized_cleaned), [DPO code](https://github.com/allenai/open-instruct/tree/olmoe-sft), [KTO code](https://github.com/Muennighoff/kto/blob/master/kto.py) and [Logs](https://github.com/allenai/OLMoE/blob/main/logs/olmoe-dpo-logs.txt).
|
29 |
+
|
30 |
+
# Use
|
31 |
+
|
32 |
+
Install `transformers` (version `4.45.0` or greater) & `torch` and run:
|
33 |
+
|
34 |
+
```python
|
35 |
+
from transformers import OlmoeForCausalLM, AutoTokenizer
|
36 |
+
import torch
|
37 |
+
|
38 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
39 |
+
|
40 |
+
# Load different ckpts via passing e.g. `revision=step10000-tokens41B`
|
41 |
+
model = OlmoeForCausalLM.from_pretrained("allenai/OLMoE-1B-7B-0125").to(DEVICE)
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("allenai/OLMoE-1B-7B-0125")
|
43 |
+
inputs = tokenizer("Bitcoin is", return_tensors="pt")
|
44 |
+
inputs = {k: v.to(DEVICE) for k, v in inputs.items()}
|
45 |
+
out = model.generate(**inputs, max_length=64)
|
46 |
+
print(tokenizer.decode(out[0]))
|
47 |
+
# > # Bitcoin is a digital currency that is created and held electronically. No one controls it. Bitcoins arenβt printed, like dollars or euros β theyβre produced by people and businesses running computers all around the world, using software that solves mathematical
|
48 |
+
```
|
49 |
+
|
50 |
+
You can list all revisions/branches by installing `huggingface-hub` & running:
|
51 |
+
```python
|
52 |
+
from huggingface_hub import list_repo_refs
|
53 |
+
out = list_repo_refs("allenai/OLMoE-1B-7B-0125")
|
54 |
+
branches = [b.name for b in out.branches]
|
55 |
+
```
|
56 |
+
|
57 |
+
Important branches:
|
58 |
+
- `step1200000-tokens5033B`: Pretraining checkpoint used for annealing. There are a few more checkpoints after this one but we did not use them.
|
59 |
+
- `main`: Checkpoint annealed from `step1200000-tokens5033B` for an additional 100B tokens (23,842 steps). We use this checkpoint for our adaptation (https://huggingface.co/allenai/OLMoE-1B-7B-0125-SFT & https://huggingface.co/allenai/OLMoE-1B-7B-0125-Instruct).
|
60 |
+
- `fp32`: FP32 version of `main`. The model weights were stored in FP32 during training but we did not observe any performance drop from casting them to BF16 after training so we upload all weights in BF16. If you want the original FP32 checkpoint for `main` you can use this one. You will find that it yields slightly different results but should perform around the same on benchmarks.
|
61 |
+
|
62 |
+
# Evaluation Snapshot
|
63 |
+
|
64 |
+
| Model | Active Params | Open Data | MMLU | HellaSwag | ARC-Chall. | ARC-Easy | PIQA | WinoGrande |
|
65 |
+
|-----------------------------|---------------|-----------|------|-----------|------------|----------|------|------------|
|
66 |
+
| **LMs with ~1B active parameters** | | | | | | | | |
|
67 |
+
| **OLMoE-1B-7B** | **1.3B** | **β
** | **54.1** | **80.0** | **62.1** | **84.2** | **79.8** | **70.2** |
|
68 |
+
| DCLM-1B | 1.4B | β
| 48.5 | 75.1 | 57.6 | 79.5 | 76.6 | 68.1 |
|
69 |
+
| TinyLlama-1B | 1.1B | β
| 33.6 | 60.8 | 38.1 | 69.5 | 71.7 | 60.1 |
|
70 |
+
| OLMo-1B (0724) | 1.3B | β
| 32.1 | 67.5 | 36.4 | 53.5 | 74.0 | 62.9 |
|
71 |
+
| Pythia-1B | 1.1B | β
| 31.1 | 48.0 | 31.4 | 63.4 | 68.9 | 52.7 |
|
72 |
+
| **LMs with ~2-3B active parameters** | | | | | | | | |
|
73 |
+
| Qwen1.5-3B-14B | 2.7B | β | **62.4** | 80.0 | **77.4** | **91.6** | **81.0** | 72.3 |
|
74 |
+
| Gemma2-3B | 2.6B | β | 53.3 | 74.6 | 67.5 | 84.3 | 78.5 | 71.8 |
|
75 |
+
| JetMoE-2B-9B | 2.2B | β | 49.1 | **81.7** | 61.4 | 81.9 | 80.3 | 70.7 |
|
76 |
+
| DeepSeek-3B-16B | 2.9B | β | 45.5 | 80.4 | 53.4 | 82.7 | 80.1 | **73.2** |
|
77 |
+
| StableLM-2B | 1.6B | β | 40.4 | 70.3 | 50.6 | 75.3 | 75.6 | 65.8 |
|
78 |
+
| OpenMoE-3B-9B | 2.9B | β
| 27.4 | 44.4 | 29.3 | 50.6 | 63.3 | 51.9 |
|
79 |
+
| **LMs with ~7-9B active parameters** | | | | | | | | |
|
80 |
+
| Gemma2-9B | 9.2B | β | **70.6** | **87.3** | **89.5** | **95.5** | **86.1** | **78.8** |
|
81 |
+
| Llama3.1-8B | 8.0B | β | 66.9 | 81.6 | 79.5 | 91.7 | 81.1 | 76.6 |
|
82 |
+
| DCLM-7B | 6.9B | β
| 64.4 | 82.3 | 79.8 | 92.3 | 80.1 | 77.3 |
|
83 |
+
| Mistral-7B | 7.3B | β | 64.0 | 83.0 | 78.6 | 90.8 | 82.8 | 77.9 |
|
84 |
+
| OLMo-7B (0724) | 6.9B | β
| 54.9 | 80.5 | 68.0 | 85.7 | 79.3 | 73.2 |
|
85 |
+
| Llama2-7B | 6.7B | β | 46.2 | 78.9 | 54.2 | 84.0 | 77.5 | 71.7 |
|
86 |
+
|
87 |
+
# Citation
|
88 |
+
|
89 |
+
```bibtex
|
90 |
+
@misc{muennighoff2024olmoeopenmixtureofexpertslanguage,
|
91 |
+
title={OLMoE: Open Mixture-of-Experts Language Models},
|
92 |
+
author={Niklas Muennighoff and Luca Soldaini and Dirk Groeneveld and Kyle Lo and Jacob Morrison and Sewon Min and Weijia Shi and Pete Walsh and Oyvind Tafjord and Nathan Lambert and Yuling Gu and Shane Arora and Akshita Bhagia and Dustin Schwenk and David Wadden and Alexander Wettig and Binyuan Hui and Tim Dettmers and Douwe Kiela and Ali Farhadi and Noah A. Smith and Pang Wei Koh and Amanpreet Singh and Hannaneh Hajishirzi},
|
93 |
+
year={2024},
|
94 |
+
eprint={2409.02060},
|
95 |
+
archivePrefix={arXiv},
|
96 |
+
primaryClass={cs.CL},
|
97 |
+
url={https://arxiv.org/abs/2409.02060},
|
98 |
+
}
|
99 |
+
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|