amanrangapur commited on
Commit
4f4baab
·
verified ·
1 Parent(s): 03ce88b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +19 -21
README.md CHANGED
@@ -20,7 +20,7 @@ These models are trained on the Dolma dataset. We have released all code, checkp
20
  |------|--------|---------|-------------|-----------------|----------------|
21
  | [OLMo 2-7B](https://huggingface.co/allenai/OLMo-2-1124-7B) | 4 Trillion | 32 | 4096 | 32 | 4096 |
22
  | [OLMo 2-13B](https://huggingface.co/allenai/OLMo-2-1124-13B) | 5 Trillion | 40 | 5120 | 40 | 4096 |
23
- | [OLMo 2-32B](https://huggingface.co/allenai/OLMo-2-0325-32B) | 6 Trillion | 40 | 5120 | 40 | 4096 |
24
 
25
  The core models released in this batch include the following:
26
 
@@ -86,13 +86,13 @@ branches = [b.name for b in out.branches]
86
  Model fine-tuning can be done from the final checkpoint (the `main` revision of this model) or many intermediate checkpoints. Two recipes for tuning are available.
87
  1. Fine-tune with the OLMo repository:
88
  ```bash
89
- torchrun --nproc_per_node=8 scripts/train.py {path_to_train_config} \
90
- --data.paths=[{path_to_data}/input_ids.npy] \
91
- --data.label_mask_paths=[{path_to_data}/label_mask.npy] \
92
- --load_path={path_to_checkpoint} \
93
- --reset_trainer_state
94
  ```
95
- For more documentation, see the [GitHub readme](https://github.com/allenai/OLMo?tab=readme-ov-file#fine-tuning).
 
 
 
 
96
 
97
  2. Further fine-tuning support is being developing in AI2's Open Instruct repository. Details are [here](https://github.com/allenai/open-instruct).
98
 
@@ -110,7 +110,7 @@ For more documentation, see the [GitHub readme](https://github.com/allenai/OLMo?
110
 
111
  - **Project Page:** https://allenai.org/olmo
112
  - **Repositories:**
113
- - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo
114
  - Evaluation code: https://github.com/allenai/OLMo-Eval
115
  - Further fine-tuning code: https://github.com/allenai/open-instruct
116
  - **Paper:** https://arxiv.org/abs/2501.00656
@@ -119,7 +119,7 @@ For more documentation, see the [GitHub readme](https://github.com/allenai/OLMo?
119
 
120
 
121
  ## Evaluation
122
- Core model results for OLMo 2 7B and 13B models are found below.
123
 
124
  | Model | Train FLOPs | Average | ARC/C | HSwag | WinoG | MMLU | DROP | NQ | AGIEval | GSM8k | MMLUPro | TriviaQA |
125
  |-------------------|------------|---------|--------|--------|--------|-------|-------|-----|----------|--------|-----------|-----------|
@@ -146,29 +146,27 @@ Core model results for OLMo 2 7B and 13B models are found below.
146
  ## Model Details
147
 
148
  ### Pretraining
149
- | | **OLMo 2 7B** | **OLMo 2 13B** |
150
- |-------------------|------------|------------|
151
- | Pretraining Stage 1<br>([OLMo-Mix-1124](https://huggingface.co/datasets/allenai/olmo-mix-1124)) | 4 trillion tokens<br>(1 epoch) | 5 trillion tokens<br>(1.2 epochs) |
152
- | Pretraining Stage 2<br>([Dolmino-Mix-1124](https://huggingface.co/datasets/allenai/dolmino-mix-1124)) | 50B tokens (3 runs)<br>*merged* | 100B tokens (3 runs)<br>300B tokens (1 run)<br>*merged* |
153
- | Post-training<br>([Tulu 3 SFT OLMo mix](https://huggingface.co/datasets/allenai/tulu-3-sft-olmo-mixture)) | SFT + DPO + PPO<br>([preference mix](https://huggingface.co/datasets/allenai/olmo-2-1124-7b-preference-mix)) | SFT + DPO + PPO<br>([preference mix](https://huggingface.co/datasets/allenai/olmo-2-1124-13b-preference-mix)) |
154
 
155
  #### Stage 1: Initial Pretraining
156
- - Dataset: [OLMo-Mix-1124](https://huggingface.co/datasets/allenai/olmo-mix-1124) (3.9T tokens)
157
  - Coverage: 90%+ of total pretraining budget
158
- - 7B Model: ~1 epoch
159
- - 13B Model: 1.2 epochs (5T tokens)
160
 
161
  #### Stage 2: Fine-tuning
162
- - Dataset: [Dolmino-Mix-1124](https://huggingface.co/datasets/allenai/dolmino-mix-1124) (843B tokens)
163
  - Three training mixes:
164
- - 50B tokens
165
  - 100B tokens
166
  - 300B tokens
167
  - Mix composition: 50% high-quality data + academic/Q&A/instruction/math content
168
 
169
  #### Model Merging
170
- - 7B Model: 3 versions trained on 50B mix, merged via model souping
171
- - 13B Model: 3 versions on 100B mix + 1 version on 300B mix, merged for final checkpoint
172
 
173
 
174
  ## Bias, Risks, and Limitations
 
20
  |------|--------|---------|-------------|-----------------|----------------|
21
  | [OLMo 2-7B](https://huggingface.co/allenai/OLMo-2-1124-7B) | 4 Trillion | 32 | 4096 | 32 | 4096 |
22
  | [OLMo 2-13B](https://huggingface.co/allenai/OLMo-2-1124-13B) | 5 Trillion | 40 | 5120 | 40 | 4096 |
23
+ | [OLMo 2-32B](https://huggingface.co/allenai/OLMo-2-0325-32B) | 6 Trillion | 64 | 5120 | 40 | 4096 |
24
 
25
  The core models released in this batch include the following:
26
 
 
86
  Model fine-tuning can be done from the final checkpoint (the `main` revision of this model) or many intermediate checkpoints. Two recipes for tuning are available.
87
  1. Fine-tune with the OLMo repository:
88
  ```bash
89
+ python src/scripts/train/OLMo2-32B.py train_single {training_name} --trainer.load_path="{/path/to/checkpoint}" --trainer.load_strategy=if_available
 
 
 
 
90
  ```
91
+ Example:
92
+ ```bash
93
+ python src/scripts/train/OLMo2-32B.py train_single 32b_run_from_step_10000 --trainer.load_path="step10000" --trainer.load_strategy=if_available
94
+ ```
95
+ For more documentation, see the [GitHub readme](https://github.com/allenai/OLMo-core).
96
 
97
  2. Further fine-tuning support is being developing in AI2's Open Instruct repository. Details are [here](https://github.com/allenai/open-instruct).
98
 
 
110
 
111
  - **Project Page:** https://allenai.org/olmo
112
  - **Repositories:**
113
+ - Core repo (training, inference, fine-tuning etc.): https://github.com/allenai/OLMo-core
114
  - Evaluation code: https://github.com/allenai/OLMo-Eval
115
  - Further fine-tuning code: https://github.com/allenai/open-instruct
116
  - **Paper:** https://arxiv.org/abs/2501.00656
 
119
 
120
 
121
  ## Evaluation
122
+ Core model results for OLMo 2 32B are found below.
123
 
124
  | Model | Train FLOPs | Average | ARC/C | HSwag | WinoG | MMLU | DROP | NQ | AGIEval | GSM8k | MMLUPro | TriviaQA |
125
  |-------------------|------------|---------|--------|--------|--------|-------|-------|-----|----------|--------|-----------|-----------|
 
146
  ## Model Details
147
 
148
  ### Pretraining
149
+ | | **OLMo 2 32B** | **OLMo 2 13B** | **OLMo 2 7B** |
150
+ |-------------------|------------|------------|------------|
151
+ | Pretraining Stage 1 | 6 trillion tokens<br>(1 epoch) | 5 trillion tokens<br>(1.2 epochs) | 4 trillion tokens<br>(1 epoch) |
152
+ | Pretraining Stage 2 | 100B tokens (2 runs)<br>300B tokens (1 run)<br>*merged* | 100B tokens (3 runs)<br>300B tokens (1 run)<br>*merged* | 50B tokens (3 runs)<br>*merged* |
153
+ | Post-training | SFT + DPO + PPO<br>([preference mix](https://huggingface.co/datasets/allenai/olmo-2-32b-pref-mix-v1)) | SFT + DPO + PPO<br>([preference mix](https://huggingface.co/datasets/allenai/olmo-2-1124-13b-preference-mix)) | SFT + DPO + PPO<br>([preference mix](https://huggingface.co/datasets/allenai/olmo-2-1124-7b-preference-mix)) |
154
 
155
  #### Stage 1: Initial Pretraining
156
+ - Dataset: [OLMo-Mix-0325](https://huggingface.co/datasets/allenai/olmo-2-32b-pref-mix-v1) (3.9T tokens)
157
  - Coverage: 90%+ of total pretraining budget
158
+ - 32B Model: ~1 epoch
 
159
 
160
  #### Stage 2: Fine-tuning
161
+ - Dataset: [Dolmino-Mix-0325](https://huggingface.co/datasets/allenai/dolmino-mix-1124) (843B tokens)
162
  - Three training mixes:
163
+ - 100B tokens
164
  - 100B tokens
165
  - 300B tokens
166
  - Mix composition: 50% high-quality data + academic/Q&A/instruction/math content
167
 
168
  #### Model Merging
169
+ - 32B Model: 2 versions on 100B mix + 1 version on 300B mix, merged for final checkpoint
 
170
 
171
 
172
  ## Bias, Risks, and Limitations