

# ASMNet: a Lightweight Deep Neural Network for Face Alignment and Pose Estimation

Ali Pourramezan Fard, Hojjat Abdollahi, and Mohammad Mahoor

Department of Electrical and Computer Engineering University of Denver, Denver, CO

{Ali.pourramezanfard, hojjat.abdollahi, mohammad.mahoor}@du.edu

CVPR 2021 + AMFG workshop

# Outline



- Introduction
- ASMNet Architecture
- ASM Assisted Loss Function
- Evaluation

# Introduction



### ASMNet:

it is a lightweight Convolutional Neural Network (CNN) which is designed to perform face alignment and pose estimation efficiently while having acceptable accuracy

### Contributions:

- Proposing a CNN inspired by MobileNetV2 while being about 2 times smaller in terms of number of parameters

- Proposing a loss inspired by ASM to improve the accuracy of ASMNet

# **ASMNet Architecture**



- Designed inspired by the architecture of MobileNetV2
- GlobalAveragePooling layers used in order to keep features from the very first layers to the last layer
- Only used the first 15 blocks of MobileNetV2 as there is no need for abstract features in the last block
- Designed ASMNet to perform face alignment as well as pose estimation

#### Input Image





# **ASM Assisted Loss Function**



- Proposed a new loss function called ASM-LOSS
- ASM-LOSS utilizes ASM to improve the accuracy of the network
- ASM-LOSS guides the network to first learn the smoothed distribution of the facial landmark points
- Then, ASM-LOSS leads the network to learn the original landmark points
- Estimate face pose with the assistant of smoothed facial landmark points



### ASM Assisted Loss Function (cont.1)

$$\begin{array}{l} \mathbf{1} \\ G_{set} = \{ (G_x^1, G_y^1), \dots, (G_x^n, G_y^n) \} \\ P_{set} = \{ (P_x^1, P_y^1), \dots, (P_x^n, P_y^n) \} \\ \mathcal{L}_{mse} = \{ (P_x^1, P_y^1), \dots, (P_x^n, P_y^n) \} \\ \mathcal{L}_{mse} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|G_j^i - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_j^i - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_j^i - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_j^i - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_j^i - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_j^i - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_j^i - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_j^i - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_j^i - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_j^i - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_i^j - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_i^j - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_i^j - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^n \|A_i^j - P_j^i\|_2 \\ \mathcal{L}_{asm} = \frac{1}{N} \frac{1}{n} \sum_{j=1}^N \sum_{i=1}^N \frac{1}{n} \sum_{i=1}^N \sum_{j=1}^N \sum_{i=1}^N \sum_{j=1}^N \sum_{i=1}^N \sum$$

**UNIVERSITY** of

### ASM Assisted Loss Function (cont.2)

$$\mathcal{L}_{pose} = \frac{1}{N} \sum_{j=1}^{N} \frac{(y_{j}^{p} - y_{j}^{t})^{2} + (p_{j}^{p} - p_{j}^{t})^{2} + (r_{j}^{p} - r_{j}^{t})^{2}}{3}$$

$$\mathcal{L} = \sum_{i=1}^{2} \lambda_{task_{i}} \mathcal{L}_{task_{i}}$$

$$T = \{ \mathcal{L}_{facial}, \mathcal{L}_{pose} \} \qquad \lambda_{task} = \{1, 0.5\}$$

**UNIVERSI** 

Yof

# **Evaluation**



#### Comparison of Number of Parameters (in Million) and Flops (in Billion)

|                            | Method     | Ν         | NME        |             | M) FLOPs   | (B)       |
|----------------------------|------------|-----------|------------|-------------|------------|-----------|
|                            | 1010tillot | 300W      | WFLW       | T utunto (1 |            |           |
|                            | mnv2       | 4.70      | 9.57       | 2 42        | 0.60       |           |
|                            | mnv2_r     | 4.59      | 9.41       | 2.42        | 0.00       |           |
|                            | ASMNet_nr  | 6.49      | 11.96      | 1 /3        | 0.51       |           |
|                            | ASMNet     | 5.50      | 10.77      | 1.75        | 0.51       |           |
|                            |            |           |            |             |            |           |
| Method                     |            |           | Backbo     | one #       | Params (M) | FLOPs (B) |
| DVLN [45]                  |            |           | VGG-16     |             | 132.0      | 14.4      |
| SAN [12]                   |            |           | ResNet-152 |             | 57.4       | 10.7      |
| LAB [44]                   |            | Hourglass |            | 25.1        | 19.1       |           |
| ResNet50 (Wing + PDB) [15] |            |           | ResNet-50  |             | 25         | 3.8       |
| ASMNet                     |            | MobileNet | V2 [33]    | 1.4         | 0.5        |           |
| MobileNet                  | tV2 [33]   |           | -          |             | 2.4        | 0.6       |

## Evaluation (cont.1)



### Face Alignment Accuracy on 300W:

**Table 2:** Normalized Mean Error (in %) of 68-point land-marks localization on 300W [31] dataset.

| Mathad       | Normalized Mean Error |             |         |  |  |
|--------------|-----------------------|-------------|---------|--|--|
| Method       | Common                | Challenging | Fullset |  |  |
| RCN [16]     | 4.67                  | 8.44        | 5.41    |  |  |
| DAN [21]     | 3.19                  | 5.24        | 3.59    |  |  |
| PCD-CNN [22] | 3.67                  | 7.62        | 4.44    |  |  |
| CPM [13]     | 3.39                  | 8.14        | 4.36    |  |  |
| DSRN [26]    | 4.12                  | 9.68        | 5.21    |  |  |
| SAN [12]     | 3.34                  | 6.60        | 3.98    |  |  |
| LAB [44]     | 2.98                  | 5.19        | 3.49    |  |  |
| DCFE [40]    | 2.76                  | 5.22        | 3.24    |  |  |
| mnv2         | 3.93                  | 7.52        | 4.70    |  |  |
| mnv2_r       | 3.88                  | 7.35        | 4.59    |  |  |
| ASMNet_nr    | 5.86                  | 8.80        | 6.46    |  |  |
| ASMNet       | 4.82                  | 8.2         | 5.50    |  |  |



# Evaluation (cont.2)



### Face Alignment Accuracy on WFLW:

Table 3: Normalized Mean Error (in %), failure rate (in %), and AUC of 98-point landmarks localization on WFLW [44] dataset.

| Metric | Method                  | Test set | Pose  | Expression | Illumination | Make-Up | Occlusion | Blur  |
|--------|-------------------------|----------|-------|------------|--------------|---------|-----------|-------|
|        | ESR [5]                 | 11.13    | 25.88 | 11.47      | 10.49        | 11.05   | 13.75     | 12.20 |
|        | SDM [47]                | 10.29    | 24.10 | 11.45      | 9.32         | 9.38    | 13.03     | 11.28 |
| 0      | CFSS [58]               | 9.07     | 21.36 | 10.09      | 8.30         | 8.74    | 11.76     | 9.96  |
| ×)     | DVLN [45]               | 6.08     | 11.54 | 6.78       | 5.73         | 5.98    | 7.33      | 6.88  |
| TOL    | LAB [44]                | 5.27     | 10.24 | 5.51       | 5.23         | 5.15    | 6.79      | 6.32  |
| E      | ResNet50(Wing+PDB) [15] | 5.11     | 8.75  | 5.36       | 4.93         | 5.41    | 6.37      | 5.81  |
| ean    | mnv2                    | 9.57     | 18.18 | 9.93       | 8.98         | 9.92    | 11.38     | 10.79 |
| Ň      | mnv2_r                  | 9.41     | 17.86 | 9.78       | 8.90         | 9.67    | 11.25     | 10.66 |
|        | ASMNet_nr               | 11.96    | 21.95 | 13.08      | 11.02        | 11.84   | 13.24     | 12.60 |
|        | ASMNet                  | 10.77    | 21.11 | 12.02      | 9.93         | 10.55   | 12.34     | 11.62 |



# Evaluation (cont.3)



#### **Pose Estimation Accuracy:**

**Table 4:** Mean Absolute Error of pose estimationon 300W [31], WFLW [44] datasets compared toHopeNet[30].

| Method    | 1     | ASMNet_nr | ASMNet | mnv2 | mnv2_r |
|-----------|-------|-----------|--------|------|--------|
|           | yaw   | 2.41      | 1.62   | 1.75 | 1.71   |
| 300W [31] | pitch | 1.87      | 1.80   | 1.93 | 1.89   |
|           | roll  | 2.115     | 1.24   | 1.32 | 1.30   |
|           | yaw   | 3.14      | 2.97   | 3.06 | 3.08   |
| WFLW [44] | pitch | 2.99      | 2.93   | 3.03 | 2.94   |
|           | roll  | 2.23      | 2.21   | 2.26 | 2.22   |

**Table 5:** Mean Absolute Error of pose estimation on usingASMNet, JFA [48], and Yanget. al [50] on 300W [31].

| Method          | Pitch | Yaw  | Roll |
|-----------------|-------|------|------|
| Yanget. al [50] | 5.1   | 4.2  | 2.4  |
| JFA [48]        | 3.0   | 2.5  | 2.6  |
| ASMNet          | 1.80  | 1.62 | 1.24 |

### Evaluation (cont.4)



#### **Evaluation of Visual Accuracy:**



### Evaluation (cont.5)



#### **Evaluation of Visual Accuracy:**



### Evaluation (cont.6)



#### **Evaluation of Visual Accuracy:**



ASMNet: a Lightweight Deep Neural Network for Face Alignment and Pose Estimation CVPR 2021 + AMFG workshop 14 of 15



### Thank You!

ASMNet: a Lightweight Deep Neural Network for Face Alignment and Pose Estimation CVPR 2021 + AMFG workshop 15 of 15