--- library_name: peft license: apache-2.0 datasets: - Abirate/english_quotes language: - en pipeline_tag: text-generation --- ## Base model bigscience/bloomz-560m ## Training procedure According to edX Databricks llm102 course ### PromptTuningConfig - task_type=TaskType.CAUSAL_LM, - prompt_tuning_init=PromptTuningInit.RANDOM, - num_virtual_tokens=4, ### TrainingArguments - learning_rate= 3e-2, # Higher learning rate than full fine-tuning - num_train_epochs=5 # Number of passes to go through the entire fine-tuning dataset ### Framework versions - PEFT 0.4.0 ### Training output TrainOutput(global_step=35, training_loss=3.386413792201451, metrics={'train_runtime': 617.1546, 'train_samples_per_second': 0.405, 'train_steps_per_second': 0.057, 'total_flos': 58327152033792.0, 'train_loss': 3.386413792201451, 'epoch': 5.0})