File size: 2,436 Bytes
8c297d0 1734a40 44a1eba 0bfd12d 44a1eba 1734a40 9f8b7b3 1734a40 9f8b7b3 1734a40 9f8b7b3 1734a40 9f8b7b3 1734a40 9f8b7b3 1734a40 9f8b7b3 1734a40 8c297d0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 |
---
tags:
- ner
- token-classification
- berturk
- turkish
language: tr
datasets:
- MilliyetNER
widget:
- text: "Türkiye'nin başkenti Ankara'dır ve ilk cumhurbaşkanı Mustafa Kemal Atatürk'tür."
---
# DATASET
MilliyetNER dataset was collected from the Turkish Milliyet newspaper articles between 1997-1998. This dataset is presented by [Tür et al. (2003)](https://www.cambridge.org/core/journals/natural-language-engineering/article/abs/statistical-information-extraction-system-for-turkish/7C288FAFC71D5F0763C1F8CE66464017). It was collected from news articles and manually annotated with three different entity types: Person, Location, Organization. The authors did not provide training/validation/test splits for this dataset. Dataset splits used by [Yeniterzi et al. 2011](https://aclanthology.org/P11-3019).
For more information: [tdd.ai - MilliyetNER](https://data.tdd.ai/#/effafb5f-ebfc-4e5c-9a63-4f709ec1a135)
**Model is only trained using training set. Test set not included during the last training**.
# USAGE
```python
from transformers import pipeline, AutoModelForTokenClassification, AutoTokenizer
model = AutoModelForTokenClassification.from_pretrained("alierenak/berturk-cased-ner")
tokenizer = AutoTokenizer.from_pretrained("alierenak/berturk-cased-ner")
ner_pipeline = pipeline('ner', model=model, tokenizer=tokenizer)
ner_pipeline("Türkiye'nin başkenti Ankara, ilk cumhurbaşkanı Mustafa Kemal Atatürk'tür.")
```
# RESULT
```bash
[{'entity': 'B-LOCATION',
'score': 0.9966415,
'index': 1,
'word': 'Türkiye',
'start': 0,
'end': 7},
{'entity': 'B-LOCATION',
'score': 0.99456763,
'index': 5,
'word': 'Ankara',
'start': 21,
'end': 27},
{'entity': 'B-PERSON',
'score': 0.9958741,
'index': 9,
'word': 'Mustafa',
'start': 47,
'end': 54},
{'entity': 'I-PERSON',
'score': 0.98833394,
'index': 10,
'word': 'Kemal',
'start': 55,
'end': 60},
{'entity': 'I-PERSON',
'score': 0.9837286,
'index': 11,
'word': 'Atatürk',
'start': 61,
'end': 68}]
```
# BENCHMARKING
```bash
precision recall f1-score support
LOCATION 0.97 0.96 0.97 960
ORGANIZATION 0.95 0.92 0.94 863
PERSON 0.97 0.97 0.97 1410
micro avg 0.97 0.95 0.96 3233
macro avg 0.96 0.95 0.96 3233
weighted avg 0.97 0.95 0.96 3233
``` |