--- base_model: stable-diffusion-v1-5/stable-diffusion-v1-5 library_name: diffusers license: creativeml-openrail-m inference: true tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - diffusers-training --- # Text-to-image finetuning - algorithmist-girl/oracle-mnist-deep-learning This pipeline was finetuned from **stable-diffusion-v1-5/stable-diffusion-v1-5** on the **algorithmist-girl/oracle-mnist-data** dataset. Below are some example images generated with the finetuned pipeline using the following prompts: ['A black and white image of an oracle bone character with cattle label']: ![val_imgs_grid](./val_imgs_grid.png) ## Pipeline usage You can use the pipeline like so: ```python from diffusers import DiffusionPipeline import torch pipeline = DiffusionPipeline.from_pretrained("algorithmist-girl/oracle-mnist-deep-learning", torch_dtype=torch.float16) prompt = "A black and white image of an oracle bone character with cattle label" image = pipeline(prompt).images[0] image.save("my_image.png") ``` ## Training info These are the key hyperparameters used during training: * Epochs: 1 * Learning rate: 1e-05 * Batch size: 1 * Gradient accumulation steps: 4 * Image resolution: 512 * Mixed-precision: fp16 ## Intended uses & limitations #### How to use ```python # TODO: add an example code snippet for running this diffusion pipeline ``` #### Limitations and bias [TODO: provide examples of latent issues and potential remediations] ## Training details [TODO: describe the data used to train the model]