File size: 1,880 Bytes
7aba050 b181cc5 7aba050 100aa81 7aba050 d6b1a2b 7aba050 100aa81 1aa6353 7aba050 b181cc5 7aba050 b181cc5 7aba050 df63384 b181cc5 7aba050 b181cc5 7aba050 b181cc5 d6b1a2b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: mit
base_model: FacebookAI/xlm-roberta-large
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: xlm-roberta-large-sdg-classification
results: []
datasets:
- albertmartinez/OSDG
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-large-sdg-classification
This model is a fine-tuned version of [FacebookAI/xlm-roberta-large](https://huggingface.co/FacebookAI/xlm-roberta-large) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.6536
- F1: 0.8114
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | F1 | Validation Loss |
|:-------------:|:-----:|:----:|:------:|:---------------:|
| 1.7444 | 1.0 | 538 | 0.7686 | 0.8148 |
| 0.7749 | 2.0 | 1076 | 0.8000 | 0.7104 |
| 0.6165 | 3.0 | 1614 | 0.8114 | 0.6536 |
| 0.5044 | 4.0 | 2152 | 0.8140 | 0.6571 |
| 0.4217 | 5.0 | 2690 | 0.8154 | 0.6651 |
### Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.1.2.post304
- Datasets 3.2.0
- Tokenizers 0.21.0 |