File size: 2,751 Bytes
49c2c87
 
 
 
 
 
 
 
8ab4a94
 
815b5af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
49c2c87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8ab4a94
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-multilingual-cased
tags:
- generated_from_trainer
metrics:
- accuracy
datasets:
- albertmartinez/openalex-topic-title-abstract
model-index:
- name: openalex-topic-classification-title-abstract
  results:
  - task:
      type: text-classification
      name: text-classification
    dataset:
      name: albertmartinez/openalex-topic-title-abstract
      type: albertmartinez/openalex-topic-title-abstract
      split: test
    metrics:
    - type: accuracy
      value: 0.6895704387552961
      name: accuracy
      args:
        accuracy: 0.6895704387552961
        total_time_in_seconds: 2136.2893175369827
        samples_per_second: 197.54440399793566
        latency_in_seconds: 0.005062153013509054
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# openalex-topic-classification-title-abstract

This model is a fine-tuned version of [google-bert/bert-base-multilingual-cased](https://huggingface.co/google-bert/bert-base-multilingual-cased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1286
- Accuracy: 0.5287

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 128
- eval_batch_size: 128
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 10.0

### Training results

| Training Loss | Epoch | Step   | Validation Loss | Accuracy |
|:-------------:|:-----:|:------:|:---------------:|:--------:|
| 4.7089        | 1.0   | 26376  | 4.6094          | 0.1920   |
| 2.9397        | 2.0   | 52752  | 2.8504          | 0.4195   |
| 2.444         | 3.0   | 79128  | 2.4296          | 0.4763   |
| 2.1399        | 4.0   | 105504 | 2.2586          | 0.5015   |
| 1.9042        | 5.0   | 131880 | 2.1800          | 0.5144   |
| 1.7293        | 6.0   | 158256 | 2.1372          | 0.5227   |
| 1.5672        | 7.0   | 184632 | 2.1298          | 0.5260   |
| 1.4574        | 8.0   | 211008 | 2.1245          | 0.5281   |
| 1.3737        | 9.0   | 237384 | 2.1277          | 0.5285   |
| 1.3748        | 10.0  | 263760 | 2.1286          | 0.5287   |


### Framework versions

- Transformers 4.49.0.dev0
- Pytorch 2.6.0+cu118
- Datasets 2.19.2
- Tokenizers 0.21.0