File size: 1,864 Bytes
2d0816d
d316538
 
b6d935c
b9e9bec
 
bfa7f29
 
b9e9bec
 
 
1d2c8ed
 
 
2d0816d
474bb70
b9e9bec
 
474bb70
b9e9bec
474bb70
b6d935c
bfa7f29
d316538
 
474bb70
b9e9bec
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d316538
 
 
b9e9bec
d316538
b9e9bec
 
d316538
 
474bb70
 
 
bb68235
 
d316538
 
 
 
 
b9e9bec
 
 
 
d316538
 
 
1d2c8ed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: bert-sdg-classification
  results: []
datasets:
- albertmartinez/OSDG
pipeline_tag: text-classification
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# bert-sdg-classification

This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7055
- F1: 0.7980

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 5.0
- mixed_precision_training: Native AMP

### Training results

| Training Loss | Epoch | Step | Validation Loss | F1     |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.2299        | 1.0   | 538  | 1.0520          | 0.7118 |
| 0.9383        | 2.0   | 1076 | 0.7800          | 0.7794 |
| 0.7379        | 3.0   | 1614 | 0.7253          | 0.7947 |
| 0.6362        | 4.0   | 2152 | 0.7107          | 0.7965 |
| 0.5779        | 5.0   | 2690 | 0.7055          | 0.7980 |


### Framework versions

- Transformers 4.49.0.dev0
- Pytorch 2.1.2.post304
- Datasets 3.2.0
- Tokenizers 0.21.0