File size: 1,864 Bytes
2d0816d d316538 b6d935c b9e9bec bfa7f29 b9e9bec 1d2c8ed 2d0816d 474bb70 b9e9bec 474bb70 b9e9bec 474bb70 b6d935c bfa7f29 d316538 474bb70 b9e9bec d316538 b9e9bec d316538 b9e9bec d316538 474bb70 bb68235 d316538 b9e9bec d316538 1d2c8ed |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 |
---
library_name: transformers
license: apache-2.0
base_model: google-bert/bert-base-uncased
tags:
- generated_from_trainer
metrics:
- f1
model-index:
- name: bert-sdg-classification
results: []
datasets:
- albertmartinez/OSDG
pipeline_tag: text-classification
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# bert-sdg-classification
This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.7055
- F1: 0.7980
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 600
- num_epochs: 5.0
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 2.2299 | 1.0 | 538 | 1.0520 | 0.7118 |
| 0.9383 | 2.0 | 1076 | 0.7800 | 0.7794 |
| 0.7379 | 3.0 | 1614 | 0.7253 | 0.7947 |
| 0.6362 | 4.0 | 2152 | 0.7107 | 0.7965 |
| 0.5779 | 5.0 | 2690 | 0.7055 | 0.7980 |
### Framework versions
- Transformers 4.49.0.dev0
- Pytorch 2.1.2.post304
- Datasets 3.2.0
- Tokenizers 0.21.0 |