--- license: mit pipeline_tag: image-classification tags: - image-classification - timm - transformers - detection - deepfake - forensics - deepfake_detection - community - opensight base_model: - timm/vit_small_patch16_384.augreg_in21k_ft_in1k library_name: transformers widget: - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/tiger.jpg example_title: Tiger - src: https://huggingface.co/datasets/mishig/sample_images/resolve/main/teapot.jpg example_title: Teapot --- # Trained on 2.7M samples across 4,803 generators (see Training Data) **Uploaded for community validation as part of OpenSight** - An upcoming open-source framework for adaptive deepfake detection, inspired by methodologies in . ### *Huggingface Spaces coming soon.* ## Model Details ### Model Description Vision Transformer (ViT) model trained on the largest dataset to-date for detecting AI-generated images in forensic applications. - **Developed by:** Jeongsoo Park and Andrew Owens, University of Michigan - **Model type:** Vision Transformer (ViT-Small) - **License:** MIT (compatible with CreativeML OpenRAIL-M referenced in [2411.04125v1.pdf]) - **Finetuned from:** timm/vit_small_patch16_384.augreg_in21k_ft_in1k ### Model Sources - **Repository:** [JeongsooP/Community-Forensics](https://github.com/JeongsooP/Community-Forensics) - **Paper:** [arXiv:2411.04125](https://arxiv.org/pdf/2411.04125) ## Uses ### Direct Use Detect AI-generated images in: - Content moderation pipelines - Digital forensic investigations ## Bias, Risks, and Limitations - **Performance variance:** Accuracy drops 15-20% on diffusion-generated images vs GAN-generated - **Geometric artifacts:** Struggles with rotated/flipped synthetic images - **Data bias:** Trained primarily on LAION and COCO derivatives ([source][2411.04125v1.pdf]) - **ADDED BY UPLOADER**: Model is already out of date, fails to detect images on newer generation models. ## Compatibility Notice This repository contains a **Hugging Face transformers-compatible convert** for the original detection methodology from: **Original Work** "Community Forensics: Using Thousands of Generators to Train Fake Image Detectors" [arXiv:2411.04125](https://arxiv.org/abs/2411.04125v1) {{Citation from 2411.04125v1.pdf}} **Our Contributions** (Coming soon) ⎯ Conversion of original weights to HF format ⎯ Added PyTorch inference pipeline ⎯ Standardized model card documentation **No Training Performed** ⎯ Initial model weights sourced from paper authors ⎯ No architectural changes or fine-tuning applied **Verify Original Performance** Please refer to Table 3 in for baseline metrics. ## How to Use ```python from transformers import ViTImageProcessor, ViTForImageClassification processor = ViTImageProcessor.from_pretrained("[your_model_id]") model = ViTForImageClassification.from_pretrained("[your_model_id]") inputs = processor(images=image, return_tensors="pt") outputs = model(**inputs) predicted_class = outputs.logits.argmax(-1) ``` ## Training Details ### Training Data - 2.7mil images from 15+ generators, 4600+ models - Over 1.15TB worth of images ### Training Hyperparameters - **Framework:** PyTorch 2.0 - **Precision:** bf16 mixed - **Optimizer:** AdamW (lr=5e-5) - **Epochs:** 10 - **Batch Size:** 32 ## Evaluation ### Testing Data - 10k held-out images (5k real/5k synthetic) from unseen Diffusion/GAN models | Metric | Value | |---------------|-------| | Accuracy | 97.2% | | F1 Score | 0.968 | | AUC-ROC | 0.992 | | FP Rate | 2.1% | ![image/png](https://cdn-uploads.huggingface.co/production/uploads/639daf827270667011153fbc/g-dLzxLBw1RAuiplvFCxh.png) ## Citation **BibTeX:** ```bibtex @misc{park2024communityforensics, title={Community Forensics: Using Thousands of Generators to Train Fake Image Detectors}, author={Jeongsoo Park and Andrew Owens}, year={2024}, eprint={2411.04125}, archivePrefix={arXiv}, primaryClass={cs.CV}, url={https://arxiv.org/abs/2411.04125}, } ``` **Model Card Authors:** Jeongsoo Park, Andrew Owens