Create scripts/convert_to_pytorch.py
Browse files- scripts/convert_to_pytorch.py +240 -0
scripts/convert_to_pytorch.py
ADDED
@@ -0,0 +1,240 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""Convert ViT and non-distilled DeiT checkpoints from the timm library."""
|
2 |
+
|
3 |
+
import argparse
|
4 |
+
from pathlib import Path
|
5 |
+
|
6 |
+
import requests
|
7 |
+
import timm
|
8 |
+
import torch
|
9 |
+
from PIL import Image
|
10 |
+
from timm.data import ImageNetInfo, infer_imagenet_subset
|
11 |
+
|
12 |
+
from transformers import DeiTImageProcessor, ViTConfig, ViTForImageClassification, ViTImageProcessor, ViTModel
|
13 |
+
from transformers.utils import logging
|
14 |
+
|
15 |
+
|
16 |
+
logging.set_verbosity_info()
|
17 |
+
logger = logging.get_logger(__name__)
|
18 |
+
|
19 |
+
|
20 |
+
# here we list all keys to be renamed (original name on the left, our name on the right)
|
21 |
+
def create_rename_keys(config, base_model=False):
|
22 |
+
rename_keys = []
|
23 |
+
for i in range(config.num_hidden_layers):
|
24 |
+
# encoder layers: output projection, 2 feedforward neural networks and 2 layernorms
|
25 |
+
rename_keys.append((f"blocks.{i}.norm1.weight", f"vit.encoder.layer.{i}.layernorm_before.weight"))
|
26 |
+
rename_keys.append((f"blocks.{i}.norm1.bias", f"vit.encoder.layer.{i}.layernorm_before.bias"))
|
27 |
+
rename_keys.append((f"blocks.{i}.attn.proj.weight", f"vit.encoder.layer.{i}.attention.output.dense.weight"))
|
28 |
+
rename_keys.append((f"blocks.{i}.attn.proj.bias", f"vit.encoder.layer.{i}.attention.output.dense.bias"))
|
29 |
+
rename_keys.append((f"blocks.{i}.norm2.weight", f"vit.encoder.layer.{i}.layernorm_after.weight"))
|
30 |
+
rename_keys.append((f"blocks.{i}.norm2.bias", f"vit.encoder.layer.{i}.layernorm_after.bias"))
|
31 |
+
rename_keys.append((f"blocks.{i}.mlp.fc1.weight", f"vit.encoder.layer.{i}.intermediate.dense.weight"))
|
32 |
+
rename_keys.append((f"blocks.{i}.mlp.fc1.bias", f"vit.encoder.layer.{i}.intermediate.dense.bias"))
|
33 |
+
rename_keys.append((f"blocks.{i}.mlp.fc2.weight", f"vit.encoder.layer.{i}.output.dense.weight"))
|
34 |
+
rename_keys.append((f"blocks.{i}.mlp.fc2.bias", f"vit.encoder.layer.{i}.output.dense.bias"))
|
35 |
+
|
36 |
+
# projection layer + position embeddings
|
37 |
+
rename_keys.extend(
|
38 |
+
[
|
39 |
+
("cls_token", "vit.embeddings.cls_token"),
|
40 |
+
("patch_embed.proj.weight", "vit.embeddings.patch_embeddings.projection.weight"),
|
41 |
+
("patch_embed.proj.bias", "vit.embeddings.patch_embeddings.projection.bias"),
|
42 |
+
("pos_embed", "vit.embeddings.position_embeddings"),
|
43 |
+
]
|
44 |
+
)
|
45 |
+
|
46 |
+
if base_model:
|
47 |
+
# layernorm
|
48 |
+
rename_keys.extend(
|
49 |
+
[
|
50 |
+
("norm.weight", "layernorm.weight"),
|
51 |
+
("norm.bias", "layernorm.bias"),
|
52 |
+
]
|
53 |
+
)
|
54 |
+
|
55 |
+
# if just the base model, we should remove "vit" from all keys that start with "vit"
|
56 |
+
rename_keys = [(pair[0], pair[1][4:]) if pair[1].startswith("vit") else pair for pair in rename_keys]
|
57 |
+
else:
|
58 |
+
# layernorm + classification head
|
59 |
+
rename_keys.extend(
|
60 |
+
[
|
61 |
+
("norm.weight", "vit.layernorm.weight"),
|
62 |
+
("norm.bias", "vit.layernorm.bias"),
|
63 |
+
("head.weight", "classifier.weight"),
|
64 |
+
("head.bias", "classifier.bias"),
|
65 |
+
]
|
66 |
+
)
|
67 |
+
|
68 |
+
return rename_keys
|
69 |
+
|
70 |
+
|
71 |
+
# we split up the matrix of each encoder layer into queries, keys and values
|
72 |
+
def read_in_q_k_v(state_dict, config, base_model=False):
|
73 |
+
for i in range(config.num_hidden_layers):
|
74 |
+
if base_model:
|
75 |
+
prefix = ""
|
76 |
+
else:
|
77 |
+
prefix = "vit."
|
78 |
+
# read in weights + bias of input projection layer (in timm, this is a single matrix + bias)
|
79 |
+
in_proj_weight = state_dict.pop(f"blocks.{i}.attn.qkv.weight")
|
80 |
+
in_proj_bias = state_dict.pop(f"blocks.{i}.attn.qkv.bias")
|
81 |
+
# next, add query, keys and values (in that order) to the state dict
|
82 |
+
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.weight"] = in_proj_weight[
|
83 |
+
: config.hidden_size, :
|
84 |
+
]
|
85 |
+
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.query.bias"] = in_proj_bias[: config.hidden_size]
|
86 |
+
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.weight"] = in_proj_weight[
|
87 |
+
config.hidden_size : config.hidden_size * 2, :
|
88 |
+
]
|
89 |
+
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.key.bias"] = in_proj_bias[
|
90 |
+
config.hidden_size : config.hidden_size * 2
|
91 |
+
]
|
92 |
+
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.weight"] = in_proj_weight[
|
93 |
+
-config.hidden_size :, :
|
94 |
+
]
|
95 |
+
state_dict[f"{prefix}encoder.layer.{i}.attention.attention.value.bias"] = in_proj_bias[-config.hidden_size :]
|
96 |
+
|
97 |
+
|
98 |
+
def remove_classification_head_(state_dict):
|
99 |
+
ignore_keys = ["head.weight", "head.bias"]
|
100 |
+
for k in ignore_keys:
|
101 |
+
state_dict.pop(k, None)
|
102 |
+
|
103 |
+
|
104 |
+
def rename_key(dct, old, new):
|
105 |
+
val = dct.pop(old)
|
106 |
+
dct[new] = val
|
107 |
+
|
108 |
+
|
109 |
+
# We will verify our results on an image of cute cats
|
110 |
+
def prepare_img():
|
111 |
+
url = "http://images.cocodataset.org/val2017/000000039769.jpg"
|
112 |
+
im = Image.open(requests.get(url, stream=True).raw)
|
113 |
+
return im
|
114 |
+
|
115 |
+
|
116 |
+
@torch.no_grad()
|
117 |
+
def convert_vit_checkpoint(vit_name, pytorch_dump_folder_path):
|
118 |
+
"""
|
119 |
+
Copy/paste/tweak model's weights to our ViT structure.
|
120 |
+
"""
|
121 |
+
|
122 |
+
# define default ViT configuration
|
123 |
+
config = ViTConfig()
|
124 |
+
base_model = False
|
125 |
+
|
126 |
+
# load original model from timm
|
127 |
+
timm_model = timm.create_model(vit_name, pretrained=True)
|
128 |
+
timm_model.eval()
|
129 |
+
|
130 |
+
# detect unsupported ViT models in transformers
|
131 |
+
# fc_norm is present
|
132 |
+
if not isinstance(getattr(timm_model, "fc_norm", None), torch.nn.Identity):
|
133 |
+
raise ValueError(f"{vit_name} is not supported in transformers because of the presence of fc_norm.")
|
134 |
+
|
135 |
+
# use of global average pooling in combination (or without) class token
|
136 |
+
if getattr(timm_model, "global_pool", None) == "avg":
|
137 |
+
raise ValueError(f"{vit_name} is not supported in transformers because of use of global average pooling.")
|
138 |
+
|
139 |
+
# CLIP style vit with norm_pre layer present
|
140 |
+
if "clip" in vit_name and not isinstance(getattr(timm_model, "norm_pre", None), torch.nn.Identity):
|
141 |
+
raise ValueError(
|
142 |
+
f"{vit_name} is not supported in transformers because it's a CLIP style ViT with norm_pre layer."
|
143 |
+
)
|
144 |
+
|
145 |
+
# SigLIP style vit with attn_pool layer present
|
146 |
+
if "siglip" in vit_name and getattr(timm_model, "global_pool", None) == "map":
|
147 |
+
raise ValueError(
|
148 |
+
f"{vit_name} is not supported in transformers because it's a SigLIP style ViT with attn_pool."
|
149 |
+
)
|
150 |
+
|
151 |
+
# use of layer scale in ViT model blocks
|
152 |
+
if not isinstance(getattr(timm_model.blocks[0], "ls1", None), torch.nn.Identity) or not isinstance(
|
153 |
+
getattr(timm_model.blocks[0], "ls2", None), torch.nn.Identity
|
154 |
+
):
|
155 |
+
raise ValueError(f"{vit_name} is not supported in transformers because it uses a layer scale in its blocks.")
|
156 |
+
|
157 |
+
# Hybrid ResNet-ViTs
|
158 |
+
if not isinstance(timm_model.patch_embed, timm.layers.PatchEmbed):
|
159 |
+
raise ValueError(f"{vit_name} is not supported in transformers because it is a hybrid ResNet-ViT.")
|
160 |
+
|
161 |
+
# get patch size and image size from the patch embedding submodule
|
162 |
+
config.patch_size = timm_model.patch_embed.patch_size[0]
|
163 |
+
config.image_size = timm_model.patch_embed.img_size[0]
|
164 |
+
|
165 |
+
# retrieve architecture-specific parameters from the timm model
|
166 |
+
config.hidden_size = timm_model.embed_dim
|
167 |
+
config.intermediate_size = timm_model.blocks[0].mlp.fc1.out_features
|
168 |
+
config.num_hidden_layers = len(timm_model.blocks)
|
169 |
+
config.num_attention_heads = timm_model.blocks[0].attn.num_heads
|
170 |
+
|
171 |
+
# check whether the model has a classification head or not
|
172 |
+
if timm_model.num_classes != 0:
|
173 |
+
config.num_labels = timm_model.num_classes
|
174 |
+
# infer ImageNet subset from timm model
|
175 |
+
imagenet_subset = infer_imagenet_subset(timm_model)
|
176 |
+
dataset_info = ImageNetInfo(imagenet_subset)
|
177 |
+
config.id2label = {i: dataset_info.index_to_label_name(i) for i in range(dataset_info.num_classes())}
|
178 |
+
config.label2id = {v: k for k, v in config.id2label.items()}
|
179 |
+
else:
|
180 |
+
print(f"{vit_name} is going to be converted as a feature extractor only.")
|
181 |
+
base_model = True
|
182 |
+
|
183 |
+
# load state_dict of original model
|
184 |
+
state_dict = timm_model.state_dict()
|
185 |
+
|
186 |
+
# remove and rename some keys in the state dict
|
187 |
+
if base_model:
|
188 |
+
remove_classification_head_(state_dict)
|
189 |
+
rename_keys = create_rename_keys(config, base_model)
|
190 |
+
for src, dest in rename_keys:
|
191 |
+
rename_key(state_dict, src, dest)
|
192 |
+
read_in_q_k_v(state_dict, config, base_model)
|
193 |
+
|
194 |
+
# load HuggingFace model
|
195 |
+
if base_model:
|
196 |
+
model = ViTModel(config, add_pooling_layer=False).eval()
|
197 |
+
else:
|
198 |
+
model = ViTForImageClassification(config).eval()
|
199 |
+
model.load_state_dict(state_dict)
|
200 |
+
|
201 |
+
# Check outputs on an image, prepared by ViTImageProcessor/DeiTImageProcessor
|
202 |
+
if "deit" in vit_name:
|
203 |
+
image_processor = DeiTImageProcessor(size=config.image_size)
|
204 |
+
else:
|
205 |
+
image_processor = ViTImageProcessor(size=config.image_size)
|
206 |
+
encoding = image_processor(images=prepare_img(), return_tensors="pt")
|
207 |
+
pixel_values = encoding["pixel_values"]
|
208 |
+
outputs = model(pixel_values)
|
209 |
+
|
210 |
+
if base_model:
|
211 |
+
timm_pooled_output = timm_model.forward_features(pixel_values)
|
212 |
+
assert timm_pooled_output.shape == outputs.last_hidden_state.shape
|
213 |
+
assert torch.allclose(timm_pooled_output, outputs.last_hidden_state, atol=1e-1)
|
214 |
+
else:
|
215 |
+
timm_logits = timm_model(pixel_values)
|
216 |
+
assert timm_logits.shape == outputs.logits.shape
|
217 |
+
assert torch.allclose(timm_logits, outputs.logits, atol=1e-3)
|
218 |
+
|
219 |
+
Path(pytorch_dump_folder_path).mkdir(exist_ok=True)
|
220 |
+
print(f"Saving model {vit_name} to {pytorch_dump_folder_path}")
|
221 |
+
model.save_pretrained(pytorch_dump_folder_path)
|
222 |
+
print(f"Saving image processor to {pytorch_dump_folder_path}")
|
223 |
+
image_processor.save_pretrained(pytorch_dump_folder_path)
|
224 |
+
|
225 |
+
|
226 |
+
if __name__ == "__main__":
|
227 |
+
parser = argparse.ArgumentParser()
|
228 |
+
# Required parameters
|
229 |
+
parser.add_argument(
|
230 |
+
"--vit_name",
|
231 |
+
default="vit_base_patch16_224",
|
232 |
+
type=str,
|
233 |
+
help="Name of the ViT timm model you'd like to convert.",
|
234 |
+
)
|
235 |
+
parser.add_argument(
|
236 |
+
"--pytorch_dump_folder_path", default=None, type=str, help="Path to the output PyTorch model directory."
|
237 |
+
)
|
238 |
+
|
239 |
+
args = parser.parse_args()
|
240 |
+
convert_vit_checkpoint(args.vit_name, args.pytorch_dump_folder_path)
|