aisuko commited on
Commit
81f4594
·
verified ·
1 Parent(s): 651c3ea

End of training

Browse files
Files changed (4) hide show
  1. README.md +145 -140
  2. adapter_config.json +3 -2
  3. adapter_model.safetensors +2 -2
  4. training_args.bin +1 -1
README.md CHANGED
@@ -18,113 +18,113 @@ should probably proofread and complete it, then remove this comment. -->
18
 
19
  This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
20
  It achieves the following results on the evaluation set:
21
- - Loss: 4.8555
22
- - Mean Iou: 0.0007
23
- - Mean Accuracy: 0.0033
24
- - Overall Accuracy: 0.0141
25
  - Accuracy Wall: nan
26
- - Accuracy Building: 0.0405
27
- - Accuracy Sky: 0.0574
28
- - Accuracy Floor: 0.0021
29
- - Accuracy Tree: 0.0025
30
  - Accuracy Ceiling: 0.0
31
- - Accuracy Road: 0.0222
32
- - Accuracy Bed : 0.0
33
- - Accuracy Windowpane: 0.0130
34
- - Accuracy Grass: nan
35
  - Accuracy Cabinet: 0.0
36
  - Accuracy Sidewalk: 0.0
37
- - Accuracy Person: nan
38
  - Accuracy Earth: 0.0
39
  - Accuracy Door: 0.0
40
- - Accuracy Table: 0.0066
41
  - Accuracy Mountain: 0.0
42
- - Accuracy Plant: 0.0021
43
  - Accuracy Curtain: 0.0
44
  - Accuracy Chair: 0.0
45
- - Accuracy Car: 0.0051
46
  - Accuracy Water: 0.0
47
  - Accuracy Painting: 0.0
48
- - Accuracy Sofa: nan
49
- - Accuracy Shelf: nan
50
  - Accuracy House: 0.0
51
  - Accuracy Sea: 0.0
52
- - Accuracy Mirror: nan
53
- - Accuracy Rug: nan
54
  - Accuracy Field: 0.0
55
- - Accuracy Armchair: 0.0
56
  - Accuracy Seat: 0.0
57
  - Accuracy Fence: 0.0
58
  - Accuracy Desk: 0.0
59
  - Accuracy Rock: nan
60
  - Accuracy Wardrobe: 0.0
61
- - Accuracy Lamp: nan
62
  - Accuracy Bathtub: nan
63
- - Accuracy Railing: nan
64
  - Accuracy Cushion: nan
65
- - Accuracy Base: nan
66
  - Accuracy Box: 0.0
67
  - Accuracy Column: 0.0
68
- - Accuracy Signboard: nan
69
  - Accuracy Chest of drawers: nan
70
- - Accuracy Counter: nan
71
- - Accuracy Sand: nan
72
- - Accuracy Sink: nan
73
- - Accuracy Skyscraper: nan
74
  - Accuracy Fireplace: nan
75
- - Accuracy Refrigerator: nan
76
- - Accuracy Grandstand: nan
77
  - Accuracy Path: nan
78
  - Accuracy Stairs: 0.0
79
  - Accuracy Runway: nan
80
- - Accuracy Case: nan
81
- - Accuracy Pool table: nan
82
  - Accuracy Pillow: nan
83
  - Accuracy Screen door: 0.0
84
- - Accuracy Stairway: nan
85
- - Accuracy River: nan
86
  - Accuracy Bridge: nan
87
  - Accuracy Bookcase: nan
88
- - Accuracy Blind: nan
89
- - Accuracy Coffee table: nan
90
- - Accuracy Toilet: nan
91
- - Accuracy Flower: nan
92
- - Accuracy Book: nan
93
  - Accuracy Hill: nan
94
- - Accuracy Bench: nan
95
- - Accuracy Countertop: nan
96
- - Accuracy Stove: nan
97
- - Accuracy Palm: nan
98
  - Accuracy Kitchen island: nan
99
- - Accuracy Computer: 0.0
100
- - Accuracy Swivel chair: nan
101
  - Accuracy Boat: nan
102
  - Accuracy Bar: nan
103
- - Accuracy Arcade machine: nan
104
  - Accuracy Hovel: nan
105
- - Accuracy Bus: nan
106
  - Accuracy Towel: 0.0
107
- - Accuracy Light: nan
108
  - Accuracy Truck: nan
109
  - Accuracy Tower: 0.0
110
- - Accuracy Chandelier: nan
111
  - Accuracy Awning: 0.0
112
  - Accuracy Streetlight: nan
113
- - Accuracy Booth: nan
114
- - Accuracy Television receiver: 0.0
115
  - Accuracy Airplane: nan
116
- - Accuracy Dirt track: nan
117
  - Accuracy Apparel: 0.0
118
- - Accuracy Pole: nan
119
  - Accuracy Land: nan
120
  - Accuracy Bannister: nan
121
- - Accuracy Escalator: nan
122
- - Accuracy Ottoman: nan
123
  - Accuracy Bottle: nan
124
  - Accuracy Buffet: nan
125
- - Accuracy Poster: 0.0
126
  - Accuracy Stage: 0.0
127
- - Accuracy Van: nan
128
  - Accuracy Ship: nan
129
  - Accuracy Fountain: nan
130
  - Accuracy Conveyer belt: nan
@@ -134,75 +134,75 @@ It achieves the following results on the evaluation set:
134
  - Accuracy Swimming pool: 0.0
135
  - Accuracy Stool: nan
136
  - Accuracy Barrel: nan
137
- - Accuracy Basket: 0.0
138
  - Accuracy Waterfall: nan
139
- - Accuracy Tent: 0.0
140
  - Accuracy Bag: nan
141
  - Accuracy Minibike: nan
142
- - Accuracy Cradle: nan
143
  - Accuracy Oven: nan
144
  - Accuracy Ball: nan
145
- - Accuracy Food: 0.0
146
  - Accuracy Step: nan
147
- - Accuracy Tank: nan
148
  - Accuracy Trade name: nan
149
- - Accuracy Microwave: nan
150
- - Accuracy Pot: nan
151
  - Accuracy Animal: nan
152
  - Accuracy Bicycle: nan
153
  - Accuracy Lake: nan
154
  - Accuracy Dishwasher: nan
155
- - Accuracy Screen: nan
156
  - Accuracy Blanket: nan
157
- - Accuracy Sculpture: nan
158
- - Accuracy Hood: nan
159
  - Accuracy Sconce: 0.0
160
  - Accuracy Vase: nan
161
- - Accuracy Traffic light: nan
162
- - Accuracy Tray: nan
163
- - Accuracy Ashcan: nan
164
- - Accuracy Fan: nan
165
  - Accuracy Pier: nan
166
- - Accuracy Crt screen: nan
167
  - Accuracy Plate: nan
168
  - Accuracy Monitor: nan
169
- - Accuracy Bulletin board: nan
170
  - Accuracy Shower: nan
171
- - Accuracy Radiator: nan
172
  - Accuracy Glass: 0.0
173
  - Accuracy Clock: nan
174
  - Accuracy Flag: nan
175
  - Iou Wall: 0.0
176
- - Iou Building: 0.0141
177
- - Iou Sky: 0.0213
178
- - Iou Floor: 0.0013
179
- - Iou Tree: 0.0008
180
  - Iou Ceiling: 0.0
181
- - Iou Road: 0.0051
182
- - Iou Bed : 0.0
183
- - Iou Windowpane: 0.0090
184
  - Iou Grass: 0.0
185
  - Iou Cabinet: 0.0
186
  - Iou Sidewalk: 0.0
187
- - Iou Person: 0.0
188
  - Iou Earth: 0.0
189
  - Iou Door: 0.0
190
- - Iou Table: 0.0062
191
  - Iou Mountain: 0.0
192
- - Iou Plant: 0.0018
193
  - Iou Curtain: 0.0
194
  - Iou Chair: 0.0
195
- - Iou Car: 0.0003
196
  - Iou Water: 0.0
197
  - Iou Painting: 0.0
198
  - Iou Sofa: 0.0
199
  - Iou Shelf: 0.0
200
  - Iou House: 0.0
201
  - Iou Sea: 0.0
202
- - Iou Mirror: nan
203
  - Iou Rug: 0.0
204
  - Iou Field: 0.0
205
- - Iou Armchair: 0.0
206
  - Iou Seat: 0.0
207
  - Iou Fence: 0.0
208
  - Iou Desk: 0.0
@@ -210,104 +210,104 @@ It achieves the following results on the evaluation set:
210
  - Iou Wardrobe: 0.0
211
  - Iou Lamp: 0.0
212
  - Iou Bathtub: nan
213
- - Iou Railing: nan
214
  - Iou Cushion: nan
215
  - Iou Base: 0.0
216
  - Iou Box: 0.0
217
  - Iou Column: 0.0
218
  - Iou Signboard: 0.0
219
  - Iou Chest of drawers: nan
220
- - Iou Counter: nan
221
- - Iou Sand: nan
222
- - Iou Sink: nan
223
- - Iou Skyscraper: nan
224
  - Iou Fireplace: nan
225
- - Iou Refrigerator: nan
226
- - Iou Grandstand: nan
227
- - Iou Path: 0.0
228
  - Iou Stairs: 0.0
229
- - Iou Runway: 0.0
230
- - Iou Case: nan
231
- - Iou Pool table: nan
232
  - Iou Pillow: nan
233
  - Iou Screen door: 0.0
234
- - Iou Stairway: nan
235
  - Iou River: 0.0
236
- - Iou Bridge: 0.0
237
  - Iou Bookcase: nan
238
  - Iou Blind: 0.0
239
- - Iou Coffee table: nan
240
- - Iou Toilet: nan
241
- - Iou Flower: nan
242
  - Iou Book: 0.0
243
  - Iou Hill: nan
244
  - Iou Bench: 0.0
245
- - Iou Countertop: nan
246
  - Iou Stove: 0.0
247
  - Iou Palm: 0.0
248
  - Iou Kitchen island: nan
249
- - Iou Computer: 0.0
250
- - Iou Swivel chair: nan
251
  - Iou Boat: nan
252
- - Iou Bar: 0.0
253
- - Iou Arcade machine: nan
254
- - Iou Hovel: 0.0
255
  - Iou Bus: 0.0
256
  - Iou Towel: 0.0
257
- - Iou Light: nan
258
  - Iou Truck: nan
259
  - Iou Tower: 0.0
260
- - Iou Chandelier: nan
261
  - Iou Awning: 0.0
262
  - Iou Streetlight: nan
263
- - Iou Booth: nan
264
- - Iou Television receiver: 0.0
265
  - Iou Airplane: nan
266
- - Iou Dirt track: nan
267
  - Iou Apparel: 0.0
268
  - Iou Pole: 0.0
269
- - Iou Land: 0.0
270
  - Iou Bannister: nan
271
  - Iou Escalator: 0.0
272
- - Iou Ottoman: nan
273
  - Iou Bottle: nan
274
- - Iou Buffet: 0.0
275
- - Iou Poster: 0.0
276
  - Iou Stage: 0.0
277
  - Iou Van: 0.0
278
  - Iou Ship: nan
279
  - Iou Fountain: nan
280
- - Iou Conveyer belt: 0.0
281
- - Iou Canopy: 0.0
282
  - Iou Washer: nan
283
  - Iou Plaything: nan
284
  - Iou Swimming pool: 0.0
285
  - Iou Stool: nan
286
  - Iou Barrel: nan
287
- - Iou Basket: 0.0
288
  - Iou Waterfall: nan
289
- - Iou Tent: 0.0
290
  - Iou Bag: nan
291
  - Iou Minibike: nan
292
- - Iou Cradle: nan
293
  - Iou Oven: nan
294
- - Iou Ball: 0.0
295
- - Iou Food: 0.0
296
  - Iou Step: nan
297
  - Iou Tank: 0.0
298
  - Iou Trade name: nan
299
- - Iou Microwave: nan
300
- - Iou Pot: nan
301
- - Iou Animal: 0.0
302
  - Iou Bicycle: nan
303
  - Iou Lake: nan
304
  - Iou Dishwasher: nan
305
- - Iou Screen: nan
306
  - Iou Blanket: nan
307
- - Iou Sculpture: nan
308
- - Iou Hood: nan
309
  - Iou Sconce: 0.0
310
- - Iou Vase: 0.0
311
  - Iou Traffic light: 0.0
312
  - Iou Tray: 0.0
313
  - Iou Ashcan: 0.0
@@ -315,12 +315,12 @@ It achieves the following results on the evaluation set:
315
  - Iou Pier: nan
316
  - Iou Crt screen: 0.0
317
  - Iou Plate: nan
318
- - Iou Monitor: 0.0
319
- - Iou Bulletin board: nan
320
- - Iou Shower: 0.0
321
- - Iou Radiator: nan
322
  - Iou Glass: 0.0
323
- - Iou Clock: 0.0
324
  - Iou Flag: nan
325
 
326
  ## Model description
@@ -346,13 +346,18 @@ The following hyperparameters were used during training:
346
  - seed: 42
347
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
348
  - lr_scheduler_type: linear
349
- - num_epochs: 1
 
350
 
351
  ### Training results
352
 
353
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Wall | Accuracy Building | Accuracy Sky | Accuracy Floor | Accuracy Tree | Accuracy Ceiling | Accuracy Road | Accuracy Bed | Accuracy Windowpane | Accuracy Grass | Accuracy Cabinet | Accuracy Sidewalk | Accuracy Person | Accuracy Earth | Accuracy Door | Accuracy Table | Accuracy Mountain | Accuracy Plant | Accuracy Curtain | Accuracy Chair | Accuracy Car | Accuracy Water | Accuracy Painting | Accuracy Sofa | Accuracy Shelf | Accuracy House | Accuracy Sea | Accuracy Mirror | Accuracy Rug | Accuracy Field | Accuracy Armchair | Accuracy Seat | Accuracy Fence | Accuracy Desk | Accuracy Rock | Accuracy Wardrobe | Accuracy Lamp | Accuracy Bathtub | Accuracy Railing | Accuracy Cushion | Accuracy Base | Accuracy Box | Accuracy Column | Accuracy Signboard | Accuracy Chest of drawers | Accuracy Counter | Accuracy Sand | Accuracy Sink | Accuracy Skyscraper | Accuracy Fireplace | Accuracy Refrigerator | Accuracy Grandstand | Accuracy Path | Accuracy Stairs | Accuracy Runway | Accuracy Case | Accuracy Pool table | Accuracy Pillow | Accuracy Screen door | Accuracy Stairway | Accuracy River | Accuracy Bridge | Accuracy Bookcase | Accuracy Blind | Accuracy Coffee table | Accuracy Toilet | Accuracy Flower | Accuracy Book | Accuracy Hill | Accuracy Bench | Accuracy Countertop | Accuracy Stove | Accuracy Palm | Accuracy Kitchen island | Accuracy Computer | Accuracy Swivel chair | Accuracy Boat | Accuracy Bar | Accuracy Arcade machine | Accuracy Hovel | Accuracy Bus | Accuracy Towel | Accuracy Light | Accuracy Truck | Accuracy Tower | Accuracy Chandelier | Accuracy Awning | Accuracy Streetlight | Accuracy Booth | Accuracy Television receiver | Accuracy Airplane | Accuracy Dirt track | Accuracy Apparel | Accuracy Pole | Accuracy Land | Accuracy Bannister | Accuracy Escalator | Accuracy Ottoman | Accuracy Bottle | Accuracy Buffet | Accuracy Poster | Accuracy Stage | Accuracy Van | Accuracy Ship | Accuracy Fountain | Accuracy Conveyer belt | Accuracy Canopy | Accuracy Washer | Accuracy Plaything | Accuracy Swimming pool | Accuracy Stool | Accuracy Barrel | Accuracy Basket | Accuracy Waterfall | Accuracy Tent | Accuracy Bag | Accuracy Minibike | Accuracy Cradle | Accuracy Oven | Accuracy Ball | Accuracy Food | Accuracy Step | Accuracy Tank | Accuracy Trade name | Accuracy Microwave | Accuracy Pot | Accuracy Animal | Accuracy Bicycle | Accuracy Lake | Accuracy Dishwasher | Accuracy Screen | Accuracy Blanket | Accuracy Sculpture | Accuracy Hood | Accuracy Sconce | Accuracy Vase | Accuracy Traffic light | Accuracy Tray | Accuracy Ashcan | Accuracy Fan | Accuracy Pier | Accuracy Crt screen | Accuracy Plate | Accuracy Monitor | Accuracy Bulletin board | Accuracy Shower | Accuracy Radiator | Accuracy Glass | Accuracy Clock | Accuracy Flag | Iou Wall | Iou Building | Iou Sky | Iou Floor | Iou Tree | Iou Ceiling | Iou Road | Iou Bed | Iou Windowpane | Iou Grass | Iou Cabinet | Iou Sidewalk | Iou Person | Iou Earth | Iou Door | Iou Table | Iou Mountain | Iou Plant | Iou Curtain | Iou Chair | Iou Car | Iou Water | Iou Painting | Iou Sofa | Iou Shelf | Iou House | Iou Sea | Iou Mirror | Iou Rug | Iou Field | Iou Armchair | Iou Seat | Iou Fence | Iou Desk | Iou Rock | Iou Wardrobe | Iou Lamp | Iou Bathtub | Iou Railing | Iou Cushion | Iou Base | Iou Box | Iou Column | Iou Signboard | Iou Chest of drawers | Iou Counter | Iou Sand | Iou Sink | Iou Skyscraper | Iou Fireplace | Iou Refrigerator | Iou Grandstand | Iou Path | Iou Stairs | Iou Runway | Iou Case | Iou Pool table | Iou Pillow | Iou Screen door | Iou Stairway | Iou River | Iou Bridge | Iou Bookcase | Iou Blind | Iou Coffee table | Iou Toilet | Iou Flower | Iou Book | Iou Hill | Iou Bench | Iou Countertop | Iou Stove | Iou Palm | Iou Kitchen island | Iou Computer | Iou Swivel chair | Iou Boat | Iou Bar | Iou Arcade machine | Iou Hovel | Iou Bus | Iou Towel | Iou Light | Iou Truck | Iou Tower | Iou Chandelier | Iou Awning | Iou Streetlight | Iou Booth | Iou Television receiver | Iou Airplane | Iou Dirt track | Iou Apparel | Iou Pole | Iou Land | Iou Bannister | Iou Escalator | Iou Ottoman | Iou Bottle | Iou Buffet | Iou Poster | Iou Stage | Iou Van | Iou Ship | Iou Fountain | Iou Conveyer belt | Iou Canopy | Iou Washer | Iou Plaything | Iou Swimming pool | Iou Stool | Iou Barrel | Iou Basket | Iou Waterfall | Iou Tent | Iou Bag | Iou Minibike | Iou Cradle | Iou Oven | Iou Ball | Iou Food | Iou Step | Iou Tank | Iou Trade name | Iou Microwave | Iou Pot | Iou Animal | Iou Bicycle | Iou Lake | Iou Dishwasher | Iou Screen | Iou Blanket | Iou Sculpture | Iou Hood | Iou Sconce | Iou Vase | Iou Traffic light | Iou Tray | Iou Ashcan | Iou Fan | Iou Pier | Iou Crt screen | Iou Plate | Iou Monitor | Iou Bulletin board | Iou Shower | Iou Radiator | Iou Glass | Iou Clock | Iou Flag |
354
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:-----------------:|:------------:|:--------------:|:-------------:|:----------------:|:-------------:|:-------------:|:-------------------:|:--------------:|:----------------:|:-----------------:|:---------------:|:--------------:|:-------------:|:--------------:|:-----------------:|:--------------:|:----------------:|:--------------:|:------------:|:--------------:|:-----------------:|:-------------:|:--------------:|:--------------:|:------------:|:---------------:|:------------:|:--------------:|:-----------------:|:-------------:|:--------------:|:-------------:|:-------------:|:-----------------:|:-------------:|:----------------:|:----------------:|:----------------:|:-------------:|:------------:|:---------------:|:------------------:|:-------------------------:|:----------------:|:-------------:|:-------------:|:-------------------:|:------------------:|:---------------------:|:-------------------:|:-------------:|:---------------:|:---------------:|:-------------:|:-------------------:|:---------------:|:--------------------:|:-----------------:|:--------------:|:---------------:|:-----------------:|:--------------:|:---------------------:|:---------------:|:---------------:|:-------------:|:-------------:|:--------------:|:-------------------:|:--------------:|:-------------:|:-----------------------:|:-----------------:|:---------------------:|:-------------:|:------------:|:-----------------------:|:--------------:|:------------:|:--------------:|:--------------:|:--------------:|:--------------:|:-------------------:|:---------------:|:--------------------:|:--------------:|:----------------------------:|:-----------------:|:-------------------:|:----------------:|:-------------:|:-------------:|:------------------:|:------------------:|:----------------:|:---------------:|:---------------:|:---------------:|:--------------:|:------------:|:-------------:|:-----------------:|:----------------------:|:---------------:|:---------------:|:------------------:|:----------------------:|:--------------:|:---------------:|:---------------:|:------------------:|:-------------:|:------------:|:-----------------:|:---------------:|:-------------:|:-------------:|:-------------:|:-------------:|:-------------:|:-------------------:|:------------------:|:------------:|:---------------:|:----------------:|:-------------:|:-------------------:|:---------------:|:----------------:|:------------------:|:-------------:|:---------------:|:-------------:|:----------------------:|:-------------:|:---------------:|:------------:|:-------------:|:-------------------:|:--------------:|:----------------:|:-----------------------:|:---------------:|:-----------------:|:--------------:|:--------------:|:-------------:|:--------:|:------------:|:-------:|:---------:|:--------:|:-----------:|:--------:|:--------:|:--------------:|:---------:|:-----------:|:------------:|:----------:|:---------:|:--------:|:---------:|:------------:|:---------:|:-----------:|:---------:|:-------:|:---------:|:------------:|:--------:|:---------:|:---------:|:-------:|:----------:|:-------:|:---------:|:------------:|:--------:|:---------:|:--------:|:--------:|:------------:|:--------:|:-----------:|:-----------:|:-----------:|:--------:|:-------:|:----------:|:-------------:|:--------------------:|:-----------:|:--------:|:--------:|:--------------:|:-------------:|:----------------:|:--------------:|:--------:|:----------:|:----------:|:--------:|:--------------:|:----------:|:---------------:|:------------:|:---------:|:----------:|:------------:|:---------:|:----------------:|:----------:|:----------:|:--------:|:--------:|:---------:|:--------------:|:---------:|:--------:|:------------------:|:------------:|:----------------:|:--------:|:-------:|:------------------:|:---------:|:-------:|:---------:|:---------:|:---------:|:---------:|:--------------:|:----------:|:---------------:|:---------:|:-----------------------:|:------------:|:--------------:|:-----------:|:--------:|:--------:|:-------------:|:-------------:|:-----------:|:----------:|:----------:|:----------:|:---------:|:-------:|:--------:|:------------:|:-----------------:|:----------:|:----------:|:-------------:|:-----------------:|:---------:|:----------:|:----------:|:-------------:|:--------:|:-------:|:------------:|:----------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------------:|:-------------:|:-------:|:----------:|:-----------:|:--------:|:--------------:|:----------:|:-----------:|:-------------:|:--------:|:----------:|:--------:|:-----------------:|:--------:|:----------:|:-------:|:--------:|:--------------:|:---------:|:-----------:|:------------------:|:----------:|:------------:|:---------:|:---------:|:--------:|
355
- | 4.881 | 1.0 | 9 | 4.8555 | 0.0007 | 0.0033 | 0.0141 | nan | 0.0405 | 0.0574 | 0.0021 | 0.0025 | 0.0 | 0.0222 | 0.0 | 0.0130 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0066 | 0.0 | 0.0021 | 0.0 | 0.0 | 0.0051 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | 0.0 | 0.0141 | 0.0213 | 0.0013 | 0.0008 | 0.0 | 0.0051 | 0.0 | 0.0090 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0062 | 0.0 | 0.0018 | 0.0 | 0.0 | 0.0003 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 | nan | 0.0 | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan |
 
 
 
 
356
 
357
 
358
  ### Framework versions
 
18
 
19
  This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the scene_parse_150 dataset.
20
  It achieves the following results on the evaluation set:
21
+ - Loss: 1.9666
22
+ - Mean Iou: 0.0001
23
+ - Mean Accuracy: 0.0002
24
+ - Overall Accuracy: 0.0030
25
  - Accuracy Wall: nan
26
+ - Accuracy Building: 0.0125
27
+ - Accuracy Sky: 0.0001
28
+ - Accuracy Floor: 0.0002
29
+ - Accuracy Tree: 0.0028
30
  - Accuracy Ceiling: 0.0
31
+ - Accuracy Road: 0.0
32
+ - Accuracy Bed : 0.0021
33
+ - Accuracy Windowpane: 0.0011
34
+ - Accuracy Grass: 0.0
35
  - Accuracy Cabinet: 0.0
36
  - Accuracy Sidewalk: 0.0
37
+ - Accuracy Person: 0.0034
38
  - Accuracy Earth: 0.0
39
  - Accuracy Door: 0.0
40
+ - Accuracy Table: 0.0
41
  - Accuracy Mountain: 0.0
42
+ - Accuracy Plant: 0.0
43
  - Accuracy Curtain: 0.0
44
  - Accuracy Chair: 0.0
45
+ - Accuracy Car: 0.0
46
  - Accuracy Water: 0.0
47
  - Accuracy Painting: 0.0
48
+ - Accuracy Sofa: 0.0
49
+ - Accuracy Shelf: 0.0
50
  - Accuracy House: 0.0
51
  - Accuracy Sea: 0.0
52
+ - Accuracy Mirror: 0.0
53
+ - Accuracy Rug: 0.0
54
  - Accuracy Field: 0.0
55
+ - Accuracy Armchair: nan
56
  - Accuracy Seat: 0.0
57
  - Accuracy Fence: 0.0
58
  - Accuracy Desk: 0.0
59
  - Accuracy Rock: nan
60
  - Accuracy Wardrobe: 0.0
61
+ - Accuracy Lamp: 0.0
62
  - Accuracy Bathtub: nan
63
+ - Accuracy Railing: 0.0
64
  - Accuracy Cushion: nan
65
+ - Accuracy Base: 0.0
66
  - Accuracy Box: 0.0
67
  - Accuracy Column: 0.0
68
+ - Accuracy Signboard: 0.0
69
  - Accuracy Chest of drawers: nan
70
+ - Accuracy Counter: 0.0
71
+ - Accuracy Sand: 0.0
72
+ - Accuracy Sink: 0.0
73
+ - Accuracy Skyscraper: 0.0
74
  - Accuracy Fireplace: nan
75
+ - Accuracy Refrigerator: 0.0
76
+ - Accuracy Grandstand: 0.0
77
  - Accuracy Path: nan
78
  - Accuracy Stairs: 0.0
79
  - Accuracy Runway: nan
80
+ - Accuracy Case: 0.0
81
+ - Accuracy Pool table: 0.0
82
  - Accuracy Pillow: nan
83
  - Accuracy Screen door: 0.0
84
+ - Accuracy Stairway: 0.0
85
+ - Accuracy River: 0.0
86
  - Accuracy Bridge: nan
87
  - Accuracy Bookcase: nan
88
+ - Accuracy Blind: 0.0
89
+ - Accuracy Coffee table: 0.0
90
+ - Accuracy Toilet: 0.0
91
+ - Accuracy Flower: 0.0
92
+ - Accuracy Book: 0.0
93
  - Accuracy Hill: nan
94
+ - Accuracy Bench: 0.0
95
+ - Accuracy Countertop: 0.0
96
+ - Accuracy Stove: 0.0
97
+ - Accuracy Palm: 0.0
98
  - Accuracy Kitchen island: nan
99
+ - Accuracy Computer: nan
100
+ - Accuracy Swivel chair: 0.0
101
  - Accuracy Boat: nan
102
  - Accuracy Bar: nan
103
+ - Accuracy Arcade machine: 0.0
104
  - Accuracy Hovel: nan
105
+ - Accuracy Bus: 0.0
106
  - Accuracy Towel: 0.0
107
+ - Accuracy Light: 0.0
108
  - Accuracy Truck: nan
109
  - Accuracy Tower: 0.0
110
+ - Accuracy Chandelier: 0.0
111
  - Accuracy Awning: 0.0
112
  - Accuracy Streetlight: nan
113
+ - Accuracy Booth: 0.0
114
+ - Accuracy Television receiver: nan
115
  - Accuracy Airplane: nan
116
+ - Accuracy Dirt track: 0.0
117
  - Accuracy Apparel: 0.0
118
+ - Accuracy Pole: 0.0
119
  - Accuracy Land: nan
120
  - Accuracy Bannister: nan
121
+ - Accuracy Escalator: 0.0
122
+ - Accuracy Ottoman: 0.0
123
  - Accuracy Bottle: nan
124
  - Accuracy Buffet: nan
125
+ - Accuracy Poster: nan
126
  - Accuracy Stage: 0.0
127
+ - Accuracy Van: 0.0
128
  - Accuracy Ship: nan
129
  - Accuracy Fountain: nan
130
  - Accuracy Conveyer belt: nan
 
134
  - Accuracy Swimming pool: 0.0
135
  - Accuracy Stool: nan
136
  - Accuracy Barrel: nan
137
+ - Accuracy Basket: nan
138
  - Accuracy Waterfall: nan
139
+ - Accuracy Tent: nan
140
  - Accuracy Bag: nan
141
  - Accuracy Minibike: nan
142
+ - Accuracy Cradle: 0.0
143
  - Accuracy Oven: nan
144
  - Accuracy Ball: nan
145
+ - Accuracy Food: nan
146
  - Accuracy Step: nan
147
+ - Accuracy Tank: 0.0
148
  - Accuracy Trade name: nan
149
+ - Accuracy Microwave: 0.0
150
+ - Accuracy Pot: 0.0
151
  - Accuracy Animal: nan
152
  - Accuracy Bicycle: nan
153
  - Accuracy Lake: nan
154
  - Accuracy Dishwasher: nan
155
+ - Accuracy Screen: 0.0
156
  - Accuracy Blanket: nan
157
+ - Accuracy Sculpture: 0.0
158
+ - Accuracy Hood: 0.0
159
  - Accuracy Sconce: 0.0
160
  - Accuracy Vase: nan
161
+ - Accuracy Traffic light: 0.0
162
+ - Accuracy Tray: 0.0
163
+ - Accuracy Ashcan: 0.0
164
+ - Accuracy Fan: 0.0
165
  - Accuracy Pier: nan
166
+ - Accuracy Crt screen: 0.0
167
  - Accuracy Plate: nan
168
  - Accuracy Monitor: nan
169
+ - Accuracy Bulletin board: 0.0
170
  - Accuracy Shower: nan
171
+ - Accuracy Radiator: 0.0
172
  - Accuracy Glass: 0.0
173
  - Accuracy Clock: nan
174
  - Accuracy Flag: nan
175
  - Iou Wall: 0.0
176
+ - Iou Building: 0.0085
177
+ - Iou Sky: 0.0000
178
+ - Iou Floor: 0.0001
179
+ - Iou Tree: 0.0007
180
  - Iou Ceiling: 0.0
181
+ - Iou Road: 0.0
182
+ - Iou Bed : 0.0013
183
+ - Iou Windowpane: 0.0008
184
  - Iou Grass: 0.0
185
  - Iou Cabinet: 0.0
186
  - Iou Sidewalk: 0.0
187
+ - Iou Person: 0.0015
188
  - Iou Earth: 0.0
189
  - Iou Door: 0.0
190
+ - Iou Table: 0.0
191
  - Iou Mountain: 0.0
192
+ - Iou Plant: 0.0
193
  - Iou Curtain: 0.0
194
  - Iou Chair: 0.0
195
+ - Iou Car: 0.0
196
  - Iou Water: 0.0
197
  - Iou Painting: 0.0
198
  - Iou Sofa: 0.0
199
  - Iou Shelf: 0.0
200
  - Iou House: 0.0
201
  - Iou Sea: 0.0
202
+ - Iou Mirror: 0.0
203
  - Iou Rug: 0.0
204
  - Iou Field: 0.0
205
+ - Iou Armchair: nan
206
  - Iou Seat: 0.0
207
  - Iou Fence: 0.0
208
  - Iou Desk: 0.0
 
210
  - Iou Wardrobe: 0.0
211
  - Iou Lamp: 0.0
212
  - Iou Bathtub: nan
213
+ - Iou Railing: 0.0
214
  - Iou Cushion: nan
215
  - Iou Base: 0.0
216
  - Iou Box: 0.0
217
  - Iou Column: 0.0
218
  - Iou Signboard: 0.0
219
  - Iou Chest of drawers: nan
220
+ - Iou Counter: 0.0
221
+ - Iou Sand: 0.0
222
+ - Iou Sink: 0.0
223
+ - Iou Skyscraper: 0.0
224
  - Iou Fireplace: nan
225
+ - Iou Refrigerator: 0.0
226
+ - Iou Grandstand: 0.0
227
+ - Iou Path: nan
228
  - Iou Stairs: 0.0
229
+ - Iou Runway: nan
230
+ - Iou Case: 0.0
231
+ - Iou Pool table: 0.0
232
  - Iou Pillow: nan
233
  - Iou Screen door: 0.0
234
+ - Iou Stairway: 0.0
235
  - Iou River: 0.0
236
+ - Iou Bridge: nan
237
  - Iou Bookcase: nan
238
  - Iou Blind: 0.0
239
+ - Iou Coffee table: 0.0
240
+ - Iou Toilet: 0.0
241
+ - Iou Flower: 0.0
242
  - Iou Book: 0.0
243
  - Iou Hill: nan
244
  - Iou Bench: 0.0
245
+ - Iou Countertop: 0.0
246
  - Iou Stove: 0.0
247
  - Iou Palm: 0.0
248
  - Iou Kitchen island: nan
249
+ - Iou Computer: nan
250
+ - Iou Swivel chair: 0.0
251
  - Iou Boat: nan
252
+ - Iou Bar: nan
253
+ - Iou Arcade machine: 0.0
254
+ - Iou Hovel: nan
255
  - Iou Bus: 0.0
256
  - Iou Towel: 0.0
257
+ - Iou Light: 0.0
258
  - Iou Truck: nan
259
  - Iou Tower: 0.0
260
+ - Iou Chandelier: 0.0
261
  - Iou Awning: 0.0
262
  - Iou Streetlight: nan
263
+ - Iou Booth: 0.0
264
+ - Iou Television receiver: nan
265
  - Iou Airplane: nan
266
+ - Iou Dirt track: 0.0
267
  - Iou Apparel: 0.0
268
  - Iou Pole: 0.0
269
+ - Iou Land: nan
270
  - Iou Bannister: nan
271
  - Iou Escalator: 0.0
272
+ - Iou Ottoman: 0.0
273
  - Iou Bottle: nan
274
+ - Iou Buffet: nan
275
+ - Iou Poster: nan
276
  - Iou Stage: 0.0
277
  - Iou Van: 0.0
278
  - Iou Ship: nan
279
  - Iou Fountain: nan
280
+ - Iou Conveyer belt: nan
281
+ - Iou Canopy: nan
282
  - Iou Washer: nan
283
  - Iou Plaything: nan
284
  - Iou Swimming pool: 0.0
285
  - Iou Stool: nan
286
  - Iou Barrel: nan
287
+ - Iou Basket: nan
288
  - Iou Waterfall: nan
289
+ - Iou Tent: nan
290
  - Iou Bag: nan
291
  - Iou Minibike: nan
292
+ - Iou Cradle: 0.0
293
  - Iou Oven: nan
294
+ - Iou Ball: nan
295
+ - Iou Food: nan
296
  - Iou Step: nan
297
  - Iou Tank: 0.0
298
  - Iou Trade name: nan
299
+ - Iou Microwave: 0.0
300
+ - Iou Pot: 0.0
301
+ - Iou Animal: nan
302
  - Iou Bicycle: nan
303
  - Iou Lake: nan
304
  - Iou Dishwasher: nan
305
+ - Iou Screen: 0.0
306
  - Iou Blanket: nan
307
+ - Iou Sculpture: 0.0
308
+ - Iou Hood: 0.0
309
  - Iou Sconce: 0.0
310
+ - Iou Vase: nan
311
  - Iou Traffic light: 0.0
312
  - Iou Tray: 0.0
313
  - Iou Ashcan: 0.0
 
315
  - Iou Pier: nan
316
  - Iou Crt screen: 0.0
317
  - Iou Plate: nan
318
+ - Iou Monitor: nan
319
+ - Iou Bulletin board: 0.0
320
+ - Iou Shower: nan
321
+ - Iou Radiator: 0.0
322
  - Iou Glass: 0.0
323
+ - Iou Clock: nan
324
  - Iou Flag: nan
325
 
326
  ## Model description
 
346
  - seed: 42
347
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
348
  - lr_scheduler_type: linear
349
+ - num_epochs: 5
350
+ - mixed_precision_training: Native AMP
351
 
352
  ### Training results
353
 
354
  | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Wall | Accuracy Building | Accuracy Sky | Accuracy Floor | Accuracy Tree | Accuracy Ceiling | Accuracy Road | Accuracy Bed | Accuracy Windowpane | Accuracy Grass | Accuracy Cabinet | Accuracy Sidewalk | Accuracy Person | Accuracy Earth | Accuracy Door | Accuracy Table | Accuracy Mountain | Accuracy Plant | Accuracy Curtain | Accuracy Chair | Accuracy Car | Accuracy Water | Accuracy Painting | Accuracy Sofa | Accuracy Shelf | Accuracy House | Accuracy Sea | Accuracy Mirror | Accuracy Rug | Accuracy Field | Accuracy Armchair | Accuracy Seat | Accuracy Fence | Accuracy Desk | Accuracy Rock | Accuracy Wardrobe | Accuracy Lamp | Accuracy Bathtub | Accuracy Railing | Accuracy Cushion | Accuracy Base | Accuracy Box | Accuracy Column | Accuracy Signboard | Accuracy Chest of drawers | Accuracy Counter | Accuracy Sand | Accuracy Sink | Accuracy Skyscraper | Accuracy Fireplace | Accuracy Refrigerator | Accuracy Grandstand | Accuracy Path | Accuracy Stairs | Accuracy Runway | Accuracy Case | Accuracy Pool table | Accuracy Pillow | Accuracy Screen door | Accuracy Stairway | Accuracy River | Accuracy Bridge | Accuracy Bookcase | Accuracy Blind | Accuracy Coffee table | Accuracy Toilet | Accuracy Flower | Accuracy Book | Accuracy Hill | Accuracy Bench | Accuracy Countertop | Accuracy Stove | Accuracy Palm | Accuracy Kitchen island | Accuracy Computer | Accuracy Swivel chair | Accuracy Boat | Accuracy Bar | Accuracy Arcade machine | Accuracy Hovel | Accuracy Bus | Accuracy Towel | Accuracy Light | Accuracy Truck | Accuracy Tower | Accuracy Chandelier | Accuracy Awning | Accuracy Streetlight | Accuracy Booth | Accuracy Television receiver | Accuracy Airplane | Accuracy Dirt track | Accuracy Apparel | Accuracy Pole | Accuracy Land | Accuracy Bannister | Accuracy Escalator | Accuracy Ottoman | Accuracy Bottle | Accuracy Buffet | Accuracy Poster | Accuracy Stage | Accuracy Van | Accuracy Ship | Accuracy Fountain | Accuracy Conveyer belt | Accuracy Canopy | Accuracy Washer | Accuracy Plaything | Accuracy Swimming pool | Accuracy Stool | Accuracy Barrel | Accuracy Basket | Accuracy Waterfall | Accuracy Tent | Accuracy Bag | Accuracy Minibike | Accuracy Cradle | Accuracy Oven | Accuracy Ball | Accuracy Food | Accuracy Step | Accuracy Tank | Accuracy Trade name | Accuracy Microwave | Accuracy Pot | Accuracy Animal | Accuracy Bicycle | Accuracy Lake | Accuracy Dishwasher | Accuracy Screen | Accuracy Blanket | Accuracy Sculpture | Accuracy Hood | Accuracy Sconce | Accuracy Vase | Accuracy Traffic light | Accuracy Tray | Accuracy Ashcan | Accuracy Fan | Accuracy Pier | Accuracy Crt screen | Accuracy Plate | Accuracy Monitor | Accuracy Bulletin board | Accuracy Shower | Accuracy Radiator | Accuracy Glass | Accuracy Clock | Accuracy Flag | Iou Wall | Iou Building | Iou Sky | Iou Floor | Iou Tree | Iou Ceiling | Iou Road | Iou Bed | Iou Windowpane | Iou Grass | Iou Cabinet | Iou Sidewalk | Iou Person | Iou Earth | Iou Door | Iou Table | Iou Mountain | Iou Plant | Iou Curtain | Iou Chair | Iou Car | Iou Water | Iou Painting | Iou Sofa | Iou Shelf | Iou House | Iou Sea | Iou Mirror | Iou Rug | Iou Field | Iou Armchair | Iou Seat | Iou Fence | Iou Desk | Iou Rock | Iou Wardrobe | Iou Lamp | Iou Bathtub | Iou Railing | Iou Cushion | Iou Base | Iou Box | Iou Column | Iou Signboard | Iou Chest of drawers | Iou Counter | Iou Sand | Iou Sink | Iou Skyscraper | Iou Fireplace | Iou Refrigerator | Iou Grandstand | Iou Path | Iou Stairs | Iou Runway | Iou Case | Iou Pool table | Iou Pillow | Iou Screen door | Iou Stairway | Iou River | Iou Bridge | Iou Bookcase | Iou Blind | Iou Coffee table | Iou Toilet | Iou Flower | Iou Book | Iou Hill | Iou Bench | Iou Countertop | Iou Stove | Iou Palm | Iou Kitchen island | Iou Computer | Iou Swivel chair | Iou Boat | Iou Bar | Iou Arcade machine | Iou Hovel | Iou Bus | Iou Towel | Iou Light | Iou Truck | Iou Tower | Iou Chandelier | Iou Awning | Iou Streetlight | Iou Booth | Iou Television receiver | Iou Airplane | Iou Dirt track | Iou Apparel | Iou Pole | Iou Land | Iou Bannister | Iou Escalator | Iou Ottoman | Iou Bottle | Iou Buffet | Iou Poster | Iou Stage | Iou Van | Iou Ship | Iou Fountain | Iou Conveyer belt | Iou Canopy | Iou Washer | Iou Plaything | Iou Swimming pool | Iou Stool | Iou Barrel | Iou Basket | Iou Waterfall | Iou Tent | Iou Bag | Iou Minibike | Iou Cradle | Iou Oven | Iou Ball | Iou Food | Iou Step | Iou Tank | Iou Trade name | Iou Microwave | Iou Pot | Iou Animal | Iou Bicycle | Iou Lake | Iou Dishwasher | Iou Screen | Iou Blanket | Iou Sculpture | Iou Hood | Iou Sconce | Iou Vase | Iou Traffic light | Iou Tray | Iou Ashcan | Iou Fan | Iou Pier | Iou Crt screen | Iou Plate | Iou Monitor | Iou Bulletin board | Iou Shower | Iou Radiator | Iou Glass | Iou Clock | Iou Flag |
355
  |:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:-------------:|:-----------------:|:------------:|:--------------:|:-------------:|:----------------:|:-------------:|:-------------:|:-------------------:|:--------------:|:----------------:|:-----------------:|:---------------:|:--------------:|:-------------:|:--------------:|:-----------------:|:--------------:|:----------------:|:--------------:|:------------:|:--------------:|:-----------------:|:-------------:|:--------------:|:--------------:|:------------:|:---------------:|:------------:|:--------------:|:-----------------:|:-------------:|:--------------:|:-------------:|:-------------:|:-----------------:|:-------------:|:----------------:|:----------------:|:----------------:|:-------------:|:------------:|:---------------:|:------------------:|:-------------------------:|:----------------:|:-------------:|:-------------:|:-------------------:|:------------------:|:---------------------:|:-------------------:|:-------------:|:---------------:|:---------------:|:-------------:|:-------------------:|:---------------:|:--------------------:|:-----------------:|:--------------:|:---------------:|:-----------------:|:--------------:|:---------------------:|:---------------:|:---------------:|:-------------:|:-------------:|:--------------:|:-------------------:|:--------------:|:-------------:|:-----------------------:|:-----------------:|:---------------------:|:-------------:|:------------:|:-----------------------:|:--------------:|:------------:|:--------------:|:--------------:|:--------------:|:--------------:|:-------------------:|:---------------:|:--------------------:|:--------------:|:----------------------------:|:-----------------:|:-------------------:|:----------------:|:-------------:|:-------------:|:------------------:|:------------------:|:----------------:|:---------------:|:---------------:|:---------------:|:--------------:|:------------:|:-------------:|:-----------------:|:----------------------:|:---------------:|:---------------:|:------------------:|:----------------------:|:--------------:|:---------------:|:---------------:|:------------------:|:-------------:|:------------:|:-----------------:|:---------------:|:-------------:|:-------------:|:-------------:|:-------------:|:-------------:|:-------------------:|:------------------:|:------------:|:---------------:|:----------------:|:-------------:|:-------------------:|:---------------:|:----------------:|:------------------:|:-------------:|:---------------:|:-------------:|:----------------------:|:-------------:|:---------------:|:------------:|:-------------:|:-------------------:|:--------------:|:----------------:|:-----------------------:|:---------------:|:-----------------:|:--------------:|:--------------:|:-------------:|:--------:|:------------:|:-------:|:---------:|:--------:|:-----------:|:--------:|:--------:|:--------------:|:---------:|:-----------:|:------------:|:----------:|:---------:|:--------:|:---------:|:------------:|:---------:|:-----------:|:---------:|:-------:|:---------:|:------------:|:--------:|:---------:|:---------:|:-------:|:----------:|:-------:|:---------:|:------------:|:--------:|:---------:|:--------:|:--------:|:------------:|:--------:|:-----------:|:-----------:|:-----------:|:--------:|:-------:|:----------:|:-------------:|:--------------------:|:-----------:|:--------:|:--------:|:--------------:|:-------------:|:----------------:|:--------------:|:--------:|:----------:|:----------:|:--------:|:--------------:|:----------:|:---------------:|:------------:|:---------:|:----------:|:------------:|:---------:|:----------------:|:----------:|:----------:|:--------:|:--------:|:---------:|:--------------:|:---------:|:--------:|:------------------:|:------------:|:----------------:|:--------:|:-------:|:------------------:|:---------:|:-------:|:---------:|:---------:|:---------:|:---------:|:--------------:|:----------:|:---------------:|:---------:|:-----------------------:|:------------:|:--------------:|:-----------:|:--------:|:--------:|:-------------:|:-------------:|:-----------:|:----------:|:----------:|:----------:|:---------:|:-------:|:--------:|:------------:|:-----------------:|:----------:|:----------:|:-------------:|:-----------------:|:---------:|:----------:|:----------:|:-------------:|:--------:|:-------:|:------------:|:----------:|:--------:|:--------:|:--------:|:--------:|:--------:|:--------------:|:-------------:|:-------:|:----------:|:-----------:|:--------:|:--------------:|:----------:|:-----------:|:-------------:|:--------:|:----------:|:--------:|:-----------------:|:--------:|:----------:|:-------:|:--------:|:--------------:|:---------:|:-----------:|:------------------:|:----------:|:------------:|:---------:|:---------:|:--------:|
356
+ | 3.1115 | 1.0 | 29 | 2.8306 | 0.0002 | 0.0004 | 0.0060 | nan | 0.0270 | 0.0001 | 0.0000 | 0.0039 | 0.0 | 0.0 | 0.0031 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0152 | 0.0000 | 0.0000 | 0.0007 | 0.0 | 0.0 | 0.0019 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0005 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan |
357
+ | 2.4701 | 2.0 | 58 | 2.2969 | 0.0002 | 0.0003 | 0.0041 | nan | 0.0176 | 0.0001 | 0.0001 | 0.0031 | 0.0000 | 0.0 | 0.0021 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0021 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0114 | 0.0000 | 0.0001 | 0.0007 | 0.0000 | 0.0 | 0.0013 | 0.0002 | 0.0 | 0.0 | 0.0 | 0.0011 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan |
358
+ | 2.1322 | 3.0 | 87 | 2.0686 | 0.0001 | 0.0002 | 0.0023 | nan | 0.0092 | 0.0002 | 0.0002 | 0.0031 | 0.0 | 0.0 | 0.0022 | 0.0010 | 0.0 | 0.0 | 0.0 | 0.0030 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0063 | 0.0000 | 0.0001 | 0.0007 | 0.0 | 0.0 | 0.0013 | 0.0008 | 0.0 | 0.0 | 0.0 | 0.0014 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan |
359
+ | 1.9709 | 4.0 | 116 | 1.9821 | 0.0001 | 0.0002 | 0.0029 | nan | 0.0123 | 0.0001 | 0.0002 | 0.0020 | 0.0 | 0.0 | 0.0026 | 0.0009 | 0.0 | 0.0 | 0.0 | 0.0027 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0080 | 0.0000 | 0.0001 | 0.0006 | 0.0 | 0.0 | 0.0015 | 0.0006 | 0.0 | 0.0 | 0.0 | 0.0012 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan |
360
+ | 1.9092 | 5.0 | 145 | 1.9666 | 0.0001 | 0.0002 | 0.0030 | nan | 0.0125 | 0.0001 | 0.0002 | 0.0028 | 0.0 | 0.0 | 0.0021 | 0.0011 | 0.0 | 0.0 | 0.0 | 0.0034 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | 0.0 | 0.0085 | 0.0000 | 0.0001 | 0.0007 | 0.0 | 0.0 | 0.0013 | 0.0008 | 0.0 | 0.0 | 0.0 | 0.0015 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | nan | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | 0.0 | 0.0 | nan | nan | 0.0 | 0.0 | nan | nan | nan | 0.0 | 0.0 | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | nan | nan | nan | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan | nan | nan | 0.0 | nan | 0.0 | 0.0 | 0.0 | nan | 0.0 | 0.0 | 0.0 | 0.0 | nan | 0.0 | nan | nan | 0.0 | nan | 0.0 | 0.0 | nan | nan |
361
 
362
 
363
  ### Framework versions
adapter_config.json CHANGED
@@ -20,12 +20,13 @@
20
  "decode_head"
21
  ],
22
  "peft_type": "LORA",
23
- "r": 32,
24
  "rank_pattern": {},
25
  "revision": null,
26
  "target_modules": [
27
  "query",
28
- "value"
 
29
  ],
30
  "task_type": null
31
  }
 
20
  "decode_head"
21
  ],
22
  "peft_type": "LORA",
23
+ "r": 16,
24
  "rank_pattern": {},
25
  "revision": null,
26
  "target_modules": [
27
  "query",
28
+ "value",
29
+ "key"
30
  ],
31
  "task_type": null
32
  }
adapter_model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:783285469ae11b0eb78eeaad0d3185e8a1337b4932a5dab7f8adf6ec6ba0c3a1
3
- size 2266120
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:208aae104045a284477fa9d47712d493a7a5968ff0dc6b6df5e3087323185f13
3
+ size 2137376
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a8ff7d5b8023add0bb1274ba511844e3756b5bd86e329b0d3b6b6120bbe081da
3
  size 4347
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed826e97287d12004a17aa818f36f78c96ad837b48d7f829c6ac220fcbbd9ceb
3
  size 4347