Update README.md
Browse files
README.md
CHANGED
|
@@ -17,8 +17,7 @@ tags:
|
|
| 17 |
## AIGCodeGeek-DS-6.7B
|
| 18 |
|
| 19 |
### Introduction
|
| 20 |
-
AIGCodeGeek-DS-6.7B is the first released version of our Code-LLM family with competitive performance on
|
| 21 |
-
We are preparing for a tech report; stay tuned for more details:)
|
| 22 |
|
| 23 |
### Model Details
|
| 24 |
#### Model Description
|
|
@@ -27,11 +26,11 @@ We are preparing for a tech report; stay tuned for more details:)
|
|
| 27 |
- Fine-tuned from [deepseek-ai/deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base) with full parameters
|
| 28 |
|
| 29 |
### Training data
|
| 30 |
-
A mixture of samples from high-quality open-source
|
|
|
|
| 31 |
|
| 32 |
### Evaluation
|
| 33 |
-
|
| 34 |
-
To check out our evaluation results: [EvalPlus](https://evalplus.github.io/leaderboard.html)
|
| 35 |
|
| 36 |
### Requirements
|
| 37 |
It should work with the same requirements as DeepSeek-Coder-6.7B or the following packages:
|
|
@@ -48,8 +47,18 @@ attrdict
|
|
| 48 |
|
| 49 |
|
| 50 |
### QuickStart
|
| 51 |
-
|
| 52 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
```
|
| 54 |
|
| 55 |
### Limits
|
|
@@ -57,9 +66,11 @@ TBD
|
|
| 57 |
|
| 58 |
### Acknowledgements
|
| 59 |
We gain a lot of knowledge and resources from the open-source community:
|
| 60 |
-
- [DeepSeekCoder](https://huggingface.co/deepseek-ai): impressive
|
| 61 |
-
- [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder): Evol Instruct
|
| 62 |
- We used a ([Leon-Leee/wizardlm_evol_instruct_v2_196K_backuped](https://huggingface.co/datasets/Leon-Leee/wizardlm_evol_instruct_v2_196K_backuped)) since this original has been deleted.
|
| 63 |
-
- [Magicoder](https://github.com/ise-uiuc/magicoder/): OSS-Instruct
|
| 64 |
-
- [Eurus](https://github.com/OpenBMB/Eurus): creative
|
| 65 |
-
- [OpenCoderInterpreter](https://opencodeinterpreter.github.io/): well-designed
|
|
|
|
|
|
|
|
|
| 17 |
## AIGCodeGeek-DS-6.7B
|
| 18 |
|
| 19 |
### Introduction
|
| 20 |
+
AIGCodeGeek-DS-6.7B is the first released version of our Code-LLM family with competitive performance on public and private benchmarks.
|
|
|
|
| 21 |
|
| 22 |
### Model Details
|
| 23 |
#### Model Description
|
|
|
|
| 26 |
- Fine-tuned from [deepseek-ai/deepseek-coder-6.7b-base](https://huggingface.co/deepseek-ai/deepseek-coder-6.7b-base) with full parameters
|
| 27 |
|
| 28 |
### Training data
|
| 29 |
+
A mixture of samples from high-quality open-source (read *Acknowledgements*) and our private datasets.
|
| 30 |
+
We have made contamination detection as Magicoder/Bigcode did.
|
| 31 |
|
| 32 |
### Evaluation
|
| 33 |
+
results to be added.
|
|
|
|
| 34 |
|
| 35 |
### Requirements
|
| 36 |
It should work with the same requirements as DeepSeek-Coder-6.7B or the following packages:
|
|
|
|
| 47 |
|
| 48 |
|
| 49 |
### QuickStart
|
| 50 |
+
|
| 51 |
```
|
| 52 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 53 |
+
tokenizer = AutoTokenizer.from_pretrained("aigcode/AIGCodeGeek-DS-6.7B", trust_remote_code=True)
|
| 54 |
+
model = AutoModelForCausalLM.from_pretrained("aigcode/AIGCodeGeek-DS-6.7B", trust_remote_code=True, torch_dtype=torch.bfloat16).cuda()
|
| 55 |
+
messages=[
|
| 56 |
+
{ 'role': 'user', 'content': "write a quick sort algorithm in python."}
|
| 57 |
+
]
|
| 58 |
+
inputs = tokenizer.apply_chat_template(messages, add_generation_prompt=True, return_tensors="pt").to(model.device)
|
| 59 |
+
# tokenizer.eos_token_id is the id of <|EOT|> token
|
| 60 |
+
outputs = model.generate(inputs, max_new_tokens=512, do_sample=False, top_k=50, top_p=0.95, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id)
|
| 61 |
+
print(tokenizer.decode(outputs[0][len(inputs[0]):], skip_special_tokens=True))
|
| 62 |
```
|
| 63 |
|
| 64 |
### Limits
|
|
|
|
| 66 |
|
| 67 |
### Acknowledgements
|
| 68 |
We gain a lot of knowledge and resources from the open-source community:
|
| 69 |
+
- [DeepSeekCoder](https://huggingface.co/deepseek-ai): impressive model series and insightful tech reports
|
| 70 |
+
- [WizardCoder](https://github.com/nlpxucan/WizardLM/tree/main/WizardCoder): Evol Instruct and public datasets
|
| 71 |
- We used a ([Leon-Leee/wizardlm_evol_instruct_v2_196K_backuped](https://huggingface.co/datasets/Leon-Leee/wizardlm_evol_instruct_v2_196K_backuped)) since this original has been deleted.
|
| 72 |
+
- [Magicoder](https://github.com/ise-uiuc/magicoder/): OSS-Instruct, [Magicoder-Evol-Instruct-110K](https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K) from theblackcat102/evol-codealpaca-v1(https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1)
|
| 73 |
+
- [Eurus](https://github.com/OpenBMB/Eurus): creative datasets for reasoning, [openbmb/UltraInteract_sft](https://huggingface.co/datasets/openbmb/UltraInteract_sft)
|
| 74 |
+
- [OpenCoderInterpreter](https://opencodeinterpreter.github.io/): well-designed system and datasets [m-a-p/Code-Feedback](https://huggingface.co/datasets/m-a-p/Code-Feedback)
|
| 75 |
+
- [flytech/python-codes-25k](https://huggingface.co/datasets/flytech/python-codes-25k): diversity
|
| 76 |
+
- [LLaMA-Factory](https://github.com/hiyouga/LLaMA-Factory): easily used to finetune base models
|