Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v2.zip +2 -2
- a2c-PandaReachDense-v2/data +13 -13
- a2c-PandaReachDense-v2/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v2/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +1 -1
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v2
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -7.57 +/- 1.73
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v2.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:800627f777cb8d142112abe18703958cb142ee662e7cec04f1b31de35fe6e63b
|
3 |
+
size 108247
|
a2c-PandaReachDense-v2/data
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
-
"__init__": "<function MultiInputActorCriticPolicy.__init__ at
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
-
"_abc_impl": "<_abc_data object at
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
@@ -41,12 +41,12 @@
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
-
"num_timesteps":
|
45 |
-
"_total_timesteps":
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
-
"start_time":
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
@@ -55,10 +55,10 @@
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
-
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////
|
59 |
-
"achieved_goal": "[[
|
60 |
-
"desired_goal": "[[-0.
|
61 |
-
"observation": "[[
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
@@ -66,9 +66,9 @@
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
-
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
-
"desired_goal": "[[
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
@@ -77,13 +77,13 @@
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
-
":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
-
"_n_updates":
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
|
|
4 |
":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=",
|
5 |
"__module__": "stable_baselines3.common.policies",
|
6 |
"__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f595ab6a560>",
|
8 |
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc_data object at 0x7f595ac4ed80>"
|
10 |
},
|
11 |
"verbose": 1,
|
12 |
"policy_kwargs": {
|
|
|
41 |
"_np_random": null
|
42 |
},
|
43 |
"n_envs": 4,
|
44 |
+
"num_timesteps": 2000000,
|
45 |
+
"_total_timesteps": 2000000,
|
46 |
"_num_timesteps_at_start": 0,
|
47 |
"seed": null,
|
48 |
"action_noise": null,
|
49 |
+
"start_time": 1679108753686302291,
|
50 |
"learning_rate": 0.0007,
|
51 |
"tensorboard_log": null,
|
52 |
"lr_schedule": {
|
|
|
55 |
},
|
56 |
"_last_obs": {
|
57 |
":type:": "<class 'collections.OrderedDict'>",
|
58 |
+
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzB38QI/QbuVPW0lgj538QI/QbuVPW0lgj538QI/QbuVPW0lgj538QI/QbuVPW0lgj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMPMOfL9f2ls/5P+7vw4ezL+TD4G8Vtm8vkCTjb9S5vu+Bw+YvwN7sb/qdM+/PfIKv5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2B38QI/QbuVPW0lgj7YAi098juEOxNeyDx38QI/QbuVPW0lgj7YAi098juEOxNeyDx38QI/QbuVPW0lgj7YAi098juEOxNeyDx38QI/QbuVPW0lgj7YAi098juEOxNeyDyUdJRidS4=",
|
59 |
+
"achieved_goal": "[[0.51149696 0.07311106 0.2541918 ]\n [0.51149696 0.07311106 0.2541918 ]\n [0.51149696 0.07311106 0.2541918 ]\n [0.51149696 0.07311106 0.2541918 ]]",
|
60 |
+
"desired_goal": "[[-0.9846031 0.8588008 -1.4687467 ]\n [-1.5946672 -0.0157545 -0.36884564]\n [-1.1060562 -0.49199158 -1.1879586 ]\n [-1.3865665 -1.6207554 -0.54275876]]",
|
61 |
+
"observation": "[[0.51149696 0.07311106 0.2541918 0.04223904 0.00403547 0.02445892]\n [0.51149696 0.07311106 0.2541918 0.04223904 0.00403547 0.02445892]\n [0.51149696 0.07311106 0.2541918 0.04223904 0.00403547 0.02445892]\n [0.51149696 0.07311106 0.2541918 0.04223904 0.00403547 0.02445892]]"
|
62 |
},
|
63 |
"_last_episode_starts": {
|
64 |
":type:": "<class 'numpy.ndarray'>",
|
|
|
66 |
},
|
67 |
"_last_original_obs": {
|
68 |
":type:": "<class 'collections.OrderedDict'>",
|
69 |
+
":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMD0+fr0972A90tEZPiZ36z2XWQK+i8DyPeprlL2cpPS98ysbPngtmr0+6Bi+C4LtPZR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=",
|
70 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
71 |
+
"desired_goal": "[[-0.06207107 0.05491566 0.15021446]\n [ 0.11497335 -0.12729488 0.11853131]\n [-0.07247145 -0.11945459 0.15153484]\n [-0.07528204 -0.14932343 0.11597069]]",
|
72 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
73 |
},
|
74 |
"_episode_num": 0,
|
|
|
77 |
"_current_progress_remaining": 0.0,
|
78 |
"ep_info_buffer": {
|
79 |
":type:": "<class 'collections.deque'>",
|
80 |
+
":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF5tWCoHMFMCUhpRSlIwBbJRLMowBdJRHQLPuSTYukDZ1fZQoaAZoCWgPQwipTZzc7zAcwJSGlFKUaBVLMmgWR0Cz7iaNAC4jdX2UKGgGaAloD0MIt+ulKQKcEMCUhpRSlGgVSzJoFkdAs+4Df/FR53V9lChoBmgJaA9DCDmdZKvLOS7AlIaUUpRoFUsyaBZHQLPt4MhX8wZ1fZQoaAZoCWgPQwjjNEQV/jQhwJSGlFKUaBVLMmgWR0Cz7sn6MzdldX2UKGgGaAloD0MIueLiqNyMJMCUhpRSlGgVSzJoFkdAs+6neaa1C3V9lChoBmgJaA9DCKnCn+HN6i7AlIaUUpRoFUsyaBZHQLPuhGIbfgt1fZQoaAZoCWgPQwiZEHNJ1WYZwJSGlFKUaBVLMmgWR0Cz7mG2w3YMdX2UKGgGaAloD0MIJAwDllzFJ8CUhpRSlGgVSzJoFkdAs+9ITzundnV9lChoBmgJaA9DCPPK9baZqhTAlIaUUpRoFUsyaBZHQLPvJaNuLrJ1fZQoaAZoCWgPQwjmP6Tfvv4xwJSGlFKUaBVLMmgWR0Cz7wKLbYbsdX2UKGgGaAloD0MI7wIlBRZQGcCUhpRSlGgVSzJoFkdAs+7f6JqIrXV9lChoBmgJaA9DCIbI6ev5WibAlIaUUpRoFUsyaBZHQLPvykgwGnp1fZQoaAZoCWgPQwimRBK9jMogwJSGlFKUaBVLMmgWR0Cz76fOyE+QdX2UKGgGaAloD0MIGt1B7EwBMMCUhpRSlGgVSzJoFkdAs++Euh9LH3V9lChoBmgJaA9DCI8ZqIx/XyPAlIaUUpRoFUsyaBZHQLPvYdeIEbJ1fZQoaAZoCWgPQwhS81XysTsZwJSGlFKUaBVLMmgWR0Cz8ESrksBidX2UKGgGaAloD0MICTauf9e3GcCUhpRSlGgVSzJoFkdAs/Ah/qgRLHV9lChoBmgJaA9DCELSp1X0lx/AlIaUUpRoFUsyaBZHQLPv/u0kWyl1fZQoaAZoCWgPQwgEr5Y7M4ERwJSGlFKUaBVLMmgWR0Cz79w6QvHtdX2UKGgGaAloD0MIc9nonJ/iFcCUhpRSlGgVSzJoFkdAs/DZwaR6nnV9lChoBmgJaA9DCAU1fAvrRirAlIaUUpRoFUsyaBZHQLPwtzcAR051fZQoaAZoCWgPQwgHz4QmiekwwJSGlFKUaBVLMmgWR0Cz8JQiaAnVdX2UKGgGaAloD0MIZRh3g2hNKcCUhpRSlGgVSzJoFkdAs/BxaTwDvHV9lChoBmgJaA9DCJVjsrj/CCPAlIaUUpRoFUsyaBZHQLPxW+36Q/51fZQoaAZoCWgPQwhUVWgglp0RwJSGlFKUaBVLMmgWR0Cz8Tl2q1gIdX2UKGgGaAloD0MIjiEAOPZMIMCUhpRSlGgVSzJoFkdAs/EWRYA80XV9lChoBmgJaA9DCDF5A8x8GzHAlIaUUpRoFUsyaBZHQLPw85D7ZWd1fZQoaAZoCWgPQwgsRfKVQI4ywJSGlFKUaBVLMmgWR0Cz8dvvKEFodX2UKGgGaAloD0MIBAMIH0psKMCUhpRSlGgVSzJoFkdAs/G5XbM5fnV9lChoBmgJaA9DCH2TpkHRHCzAlIaUUpRoFUsyaBZHQLPxlkiD/VB1fZQoaAZoCWgPQwj8VYDvNr8pwJSGlFKUaBVLMmgWR0Cz8XOPeYUndX2UKGgGaAloD0MIX0ax3NLOMMCUhpRSlGgVSzJoFkdAs/Jl7a7EpHV9lChoBmgJaA9DCPoq+dhd2CLAlIaUUpRoFUsyaBZHQLPyQ0gKWs11fZQoaAZoCWgPQwiFe2XeqnsbwJSGlFKUaBVLMmgWR0Cz8iA/C66KdX2UKGgGaAloD0MIouwt5XyBIMCUhpRSlGgVSzJoFkdAs/H9kNFz+3V9lChoBmgJaA9DCIKo+wCkXiXAlIaUUpRoFUsyaBZHQLPy5qur6tV1fZQoaAZoCWgPQwjhXpm36iozwJSGlFKUaBVLMmgWR0Cz8sQo9cKPdX2UKGgGaAloD0MIS+guibO6LMCUhpRSlGgVSzJoFkdAs/KhD5TIenV9lChoBmgJaA9DCFXcuMX8PBzAlIaUUpRoFUsyaBZHQLPyfmlqJuV1fZQoaAZoCWgPQwhslstG5wwswJSGlFKUaBVLMmgWR0Cz82sscyWSdX2UKGgGaAloD0MIMbJkjuW9F8CUhpRSlGgVSzJoFkdAs/NIn8baRXV9lChoBmgJaA9DCFYMVwdARC7AlIaUUpRoFUsyaBZHQLPzJY+B6KN1fZQoaAZoCWgPQwhM4NbdPEUUwJSGlFKUaBVLMmgWR0Cz8wLLU1AJdX2UKGgGaAloD0MIXmbYKOvnFsCUhpRSlGgVSzJoFkdAs/Ps4FRpDnV9lChoBmgJaA9DCGt9kdCWsyzAlIaUUpRoFUsyaBZHQLPzyl4TsY51fZQoaAZoCWgPQwjjjGFO0CYOwJSGlFKUaBVLMmgWR0Cz86c7U5MldX2UKGgGaAloD0MI3A4Ni1G7M8CUhpRSlGgVSzJoFkdAs/OEcPvrnnV9lChoBmgJaA9DCC5x5IHI+irAlIaUUpRoFUsyaBZHQLP0cFIuoP11fZQoaAZoCWgPQwi+afrsgJsYwJSGlFKUaBVLMmgWR0Cz9E2z0HyFdX2UKGgGaAloD0MIC0W6n1PoIcCUhpRSlGgVSzJoFkdAs/QqcbzbvnV9lChoBmgJaA9DCOzCD86nFifAlIaUUpRoFUsyaBZHQLP0B8XN1Qt1fZQoaAZoCWgPQwi0BBkBFZ4cwJSGlFKUaBVLMmgWR0Cz9RFMuez2dX2UKGgGaAloD0MIV0J3SZylFsCUhpRSlGgVSzJoFkdAs/TvHsC1Z3V9lChoBmgJaA9DCHkCYadY3SbAlIaUUpRoFUsyaBZHQLP0zM8YAKh1fZQoaAZoCWgPQwhYqDXNO4owwJSGlFKUaBVLMmgWR0Cz9KqoddVvdX2UKGgGaAloD0MIBBxClZqtJsCUhpRSlGgVSzJoFkdAs/W60Xxe9nV9lChoBmgJaA9DCAn/ImjMmDHAlIaUUpRoFUsyaBZHQLP1mGB4D9x1fZQoaAZoCWgPQwiitDf4wiwhwJSGlFKUaBVLMmgWR0Cz9XUyk9EDdX2UKGgGaAloD0MIyQVn8PeLEcCUhpRSlGgVSzJoFkdAs/VSl3yI6HV9lChoBmgJaA9DCJ3WbVD7bS7AlIaUUpRoFUsyaBZHQLP2PdWQwK11fZQoaAZoCWgPQwgVG/M64qAXwJSGlFKUaBVLMmgWR0Cz9hs3dbgTdX2UKGgGaAloD0MIHvtZLEV2M8CUhpRSlGgVSzJoFkdAs/X4K+i8F3V9lChoBmgJaA9DCAsIrYcvRzDAlIaUUpRoFUsyaBZHQLP11Xt0FKV1fZQoaAZoCWgPQwiWeauuQxUawJSGlFKUaBVLMmgWR0Cz9sI4uK4ydX2UKGgGaAloD0MItYzUeyp3LsCUhpRSlGgVSzJoFkdAs/aftkWhy3V9lChoBmgJaA9DCOaxZmSQ2y3AlIaUUpRoFUsyaBZHQLP2fJuEVWV1fZQoaAZoCWgPQwiYo8fvbeoYwJSGlFKUaBVLMmgWR0Cz9lnUtqYadX2UKGgGaAloD0MIgAuyZfmmMMCUhpRSlGgVSzJoFkdAs/dKxoqTbHV9lChoBmgJaA9DCJfiqrLv6hvAlIaUUpRoFUsyaBZHQLP3KLGrCFd1fZQoaAZoCWgPQwhgrdo1IU0twJSGlFKUaBVLMmgWR0Cz9wWlyimEdX2UKGgGaAloD0MIUUtzK4SVIMCUhpRSlGgVSzJoFkdAs/bizTnaFnV9lChoBmgJaA9DCCkJibSNYzPAlIaUUpRoFUsyaBZHQLP30Aood+51fZQoaAZoCWgPQwgkfsUaLpomwJSGlFKUaBVLMmgWR0Cz963JT2nLdX2UKGgGaAloD0MIhVs+kpLmMsCUhpRSlGgVSzJoFkdAs/eKtjkMkXV9lChoBmgJaA9DCDYC8bp+gSnAlIaUUpRoFUsyaBZHQLP3aAZ88cN1fZQoaAZoCWgPQwhSt7OvPIgawJSGlFKUaBVLMmgWR0Cz+GE96kZadX2UKGgGaAloD0MIO4kI/yLYIsCUhpRSlGgVSzJoFkdAs/g+nwXqJXV9lChoBmgJaA9DCMbAOo4fWhbAlIaUUpRoFUsyaBZHQLP4G4mkWRB1fZQoaAZoCWgPQwhCX3r7c6kwwJSGlFKUaBVLMmgWR0Cz9/jLjghsdX2UKGgGaAloD0MIJjlgV5OTMsCUhpRSlGgVSzJoFkdAs/jkmmce83V9lChoBmgJaA9DCI9U3/lFaSrAlIaUUpRoFUsyaBZHQLP4wg7YChh1fZQoaAZoCWgPQwhqvHSTGFAywJSGlFKUaBVLMmgWR0Cz+J717IDHdX2UKGgGaAloD0MIwQDChxINH8CUhpRSlGgVSzJoFkdAs/h8duHerXV9lChoBmgJaA9DCGzPLAlQoyLAlIaUUpRoFUsyaBZHQLP5bzXz19R1fZQoaAZoCWgPQwhO0ZFc/rsowJSGlFKUaBVLMmgWR0Cz+Uz0Yj0MdX2UKGgGaAloD0MIWvJ4Wn60MMCUhpRSlGgVSzJoFkdAs/kp5hScb3V9lChoBmgJaA9DCP5/nDBh5C7AlIaUUpRoFUsyaBZHQLP5BxmCiAV1fZQoaAZoCWgPQwiIug9AajMmwJSGlFKUaBVLMmgWR0Cz+f+89Oh1dX2UKGgGaAloD0MIHNMTlnjAMcCUhpRSlGgVSzJoFkdAs/ndNKyv93V9lChoBmgJaA9DCBTtKqT85BPAlIaUUpRoFUsyaBZHQLP5ujLjght1fZQoaAZoCWgPQwhE+BdBY+YRwJSGlFKUaBVLMmgWR0Cz+Zfio86ndX2UKGgGaAloD0MID7iumBFaMMCUhpRSlGgVSzJoFkdAs/qGxfOUuHV9lChoBmgJaA9DCF1Std0EFyLAlIaUUpRoFUsyaBZHQLP6ZEtuk1x1fZQoaAZoCWgPQwiF6ubibysswJSGlFKUaBVLMmgWR0Cz+kEyP+4tdX2UKGgGaAloD0MIvJF55A9mJcCUhpRSlGgVSzJoFkdAs/oee05U+HV9lChoBmgJaA9DCHxinSrf4xrAlIaUUpRoFUsyaBZHQLP7BjB2wFF1fZQoaAZoCWgPQwibWOAruvUewJSGlFKUaBVLMmgWR0Cz+uOLJjlQdX2UKGgGaAloD0MI4XoUrkdRJ8CUhpRSlGgVSzJoFkdAs/rASh8IA3V9lChoBmgJaA9DCNDRqpZ0vCnAlIaUUpRoFUsyaBZHQLP6naUzKtB1ZS4="
|
81 |
},
|
82 |
"ep_success_buffer": {
|
83 |
":type:": "<class 'collections.deque'>",
|
84 |
":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
85 |
},
|
86 |
+
"_n_updates": 100000,
|
87 |
"n_steps": 5,
|
88 |
"gamma": 0.99,
|
89 |
"gae_lambda": 1.0,
|
a2c-PandaReachDense-v2/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:53f62070090d5b82288c61e7f4c0c7cf6df6f98a0910698d361e6364962feb3c
|
3 |
size 44734
|
a2c-PandaReachDense-v2/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9a6fde2ae5afbc4be9755416ff656e0d173949aab4febce821de0eb8ccfb02e5
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f04e6c35560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f04e6d5cd80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gASVngMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgRjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYowEaGlnaJRoHWgfSwCFlGghh5RSlChLAUsDhZRoFYlDDAAAIEEAACBBAAAgQZR0lGKMDWJvdW5kZWRfYmVsb3eUaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBKMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYowKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBWJQwwAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsDhZRoNYlDAwEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYmhBTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBVoGEsGhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwaFlGgViUMYAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLBoWUaBWJQxgAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsGhZRoNYlDBgEBAQEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwaFlGg1iUMGAQEBAQEBlHSUYmhBTnVidWgYTmgQTmhBTnViLg==", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679043684598491271, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzAosfw+P0lsvdhnKT8osfw+P0lsvdhnKT8osfw+P0lsvdhnKT8osfw+P0lsvdhnKT+UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMAZtnL7vdZW/C+xyPieD1D9daMg+PiwAP9hQDj7Gbpw+50iQvdFBhz4ylHe/tjE4v5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Aosfw+P0lsvdhnKT9yBLa8ppPyuRh+3bsosfw+P0lsvdhnKT9yBLa8ppPyuRh+3bsosfw+P0lsvdhnKT9yBLa8ppPyuRh+3bsosfw+P0lsvdhnKT9yBLa8ppPyuRh+3buUdJRidS4=", "achieved_goal": "[[ 0.4935391 -0.05768704 0.6617408 ]\n [ 0.4935391 -0.05768704 0.6617408 ]\n [ 0.4935391 -0.05768704 0.6617408 ]\n [ 0.4935391 -0.05768704 0.6617408 ]]", "desired_goal": "[[-0.30551928 -1.1676615 0.23722856]\n [ 1.6602525 0.39142123 0.5006751 ]\n [ 0.13898027 0.30553263 -0.07045155]\n [ 0.264174 -0.96710503 -0.7195085 ]]", "observation": "[[ 4.9353909e-01 -5.7687040e-02 6.6174078e-01 -2.2218917e-02\n -4.6267844e-04 -6.7594163e-03]\n [ 4.9353909e-01 -5.7687040e-02 6.6174078e-01 -2.2218917e-02\n -4.6267844e-04 -6.7594163e-03]\n [ 4.9353909e-01 -5.7687040e-02 6.6174078e-01 -2.2218917e-02\n -4.6267844e-04 -6.7594163e-03]\n [ 4.9353909e-01 -5.7687040e-02 6.6174078e-01 -2.2218917e-02\n -4.6267844e-04 -6.7594163e-03]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMEEjxzy+kns8W4iRPmrTA72vyMA90Z7lPX7stT0gfrC94OW1PJ0wWTxPQBQ+O5KTPpR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[ 0.0243088 0.01535481 0.28424343]\n [-0.03218404 0.09413277 0.11211932]\n [ 0.08882998 -0.08617806 0.02220434]\n [ 0.01325622 0.14477657 0.28822502]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIbECEuHK2BMCUhpRSlIwBbJRLMowBdJRHQKMvbxuKoAJ1fZQoaAZoCWgPQwj27o/3qrUXwJSGlFKUaBVLMmgWR0CjLykCvHLidX2UKGgGaAloD0MIMWDJVSw+GcCUhpRSlGgVSzJoFkdAoy7i9M9KVnV9lChoBmgJaA9DCAN5dvnWhwjAlIaUUpRoFUsyaBZHQKMunq1w5vN1fZQoaAZoCWgPQwi/RpIgXHESwJSGlFKUaBVLMmgWR0CjMEXZXdTHdX2UKGgGaAloD0MI1dAGYAPSFsCUhpRSlGgVSzJoFkdAoy//yPMjeXV9lChoBmgJaA9DCKWHodXJ6RbAlIaUUpRoFUsyaBZHQKMvubZOBUd1fZQoaAZoCWgPQwj1E85uLXMVwJSGlFKUaBVLMmgWR0CjL3VgYxcndX2UKGgGaAloD0MIXvWAecikEcCUhpRSlGgVSzJoFkdAozEZ86V+qnV9lChoBmgJaA9DCLx5qkNuZgTAlIaUUpRoFUsyaBZHQKMw0+qR2bJ1fZQoaAZoCWgPQwiPcjCbAEMNwJSGlFKUaBVLMmgWR0CjMI3I2fkFdX2UKGgGaAloD0MIoZ4+An/YCMCUhpRSlGgVSzJoFkdAozBJlYlpoXV9lChoBmgJaA9DCOM1r+qsNgjAlIaUUpRoFUsyaBZHQKMx8Pkq+al1fZQoaAZoCWgPQwg83A4Ni0ETwJSGlFKUaBVLMmgWR0CjMar2xptadX2UKGgGaAloD0MIdLLUer+BEsCUhpRSlGgVSzJoFkdAozFk6Lfk3nV9lChoBmgJaA9DCIWZtn9lJQLAlIaUUpRoFUsyaBZHQKMxIMG5c1R1fZQoaAZoCWgPQwij6exkcOQYwJSGlFKUaBVLMmgWR0CjMsqU/wAmdX2UKGgGaAloD0MI3e7lPjmqBMCUhpRSlGgVSzJoFkdAozKElme18nV9lChoBmgJaA9DCKZIvhJI6QHAlIaUUpRoFUsyaBZHQKMyPpxm03R1fZQoaAZoCWgPQwid9/9xwiQYwJSGlFKUaBVLMmgWR0CjMfpe3QUpdX2UKGgGaAloD0MIkBFQ4QjSCcCUhpRSlGgVSzJoFkdAozPFknTiKnV9lChoBmgJaA9DCFuzlZf8ByLAlIaUUpRoFUsyaBZHQKMzgRXfZVZ1fZQoaAZoCWgPQwhPsP86N90fwJSGlFKUaBVLMmgWR0CjMzxsVLzxdX2UKGgGaAloD0MIopbmVghrCMCUhpRSlGgVSzJoFkdAozL5DXvphXV9lChoBmgJaA9DCPtd2JqtvATAlIaUUpRoFUsyaBZHQKM1C2xY7q91fZQoaAZoCWgPQwgP1CmPboQFwJSGlFKUaBVLMmgWR0CjNMWuX/o8dX2UKGgGaAloD0MIQkC+hApuCMCUhpRSlGgVSzJoFkdAozSAA0bcXXV9lChoBmgJaA9DCAbZsnxddhLAlIaUUpRoFUsyaBZHQKM0O8XenAJ1fZQoaAZoCWgPQwgSE9TwLXwUwJSGlFKUaBVLMmgWR0CjNfkGRmsedX2UKGgGaAloD0MICmZMwRq3FMCUhpRSlGgVSzJoFkdAozWzVWjoIXV9lChoBmgJaA9DCAAAAAAAIBPAlIaUUpRoFUsyaBZHQKM1bU/fO2R1fZQoaAZoCWgPQwjdKLLWUEoGwJSGlFKUaBVLMmgWR0CjNSkqUeMidX2UKGgGaAloD0MIqaJ4lbXNDsCUhpRSlGgVSzJoFkdAozbeX1J173V9lChoBmgJaA9DCDf8brplpwzAlIaUUpRoFUsyaBZHQKM2mF5fMOh1fZQoaAZoCWgPQwgfLGNDN5sMwJSGlFKUaBVLMmgWR0CjNlJDE3sHdX2UKGgGaAloD0MIn+klxjKdE8CUhpRSlGgVSzJoFkdAozYOBOHnEHV9lChoBmgJaA9DCCRFZFjFuxrAlIaUUpRoFUsyaBZHQKM3uXQdCE91fZQoaAZoCWgPQwiveVVntSASwJSGlFKUaBVLMmgWR0CjN3OAqd6LdX2UKGgGaAloD0MI/kP67euwE8CUhpRSlGgVSzJoFkdAozctdcB2fXV9lChoBmgJaA9DCI50BkZelhvAlIaUUpRoFUsyaBZHQKM26R/3Fkx1fZQoaAZoCWgPQwiOdtzwu+kMwJSGlFKUaBVLMmgWR0CjOJCJoCdSdX2UKGgGaAloD0MIeNUD5iETCMCUhpRSlGgVSzJoFkdAozhK9CeEqXV9lChoBmgJaA9DCPCHn/8ePALAlIaUUpRoFUsyaBZHQKM4BOARTS91fZQoaAZoCWgPQwjwTj49tjUYwJSGlFKUaBVLMmgWR0CjN8CZF5OadX2UKGgGaAloD0MIBRbAlIHDDcCUhpRSlGgVSzJoFkdAozlmU6gdwXV9lChoBmgJaA9DCLq6Y7FNehvAlIaUUpRoFUsyaBZHQKM5IFMZgoh1fZQoaAZoCWgPQwiC4VzDDD0WwJSGlFKUaBVLMmgWR0CjONp7b+LndX2UKGgGaAloD0MIy4P0FDkUGMCUhpRSlGgVSzJoFkdAoziWOuJUHnV9lChoBmgJaA9DCOpA1lOrXxLAlIaUUpRoFUsyaBZHQKM6aM4LkS51fZQoaAZoCWgPQwjZJD/iVywGwJSGlFKUaBVLMmgWR0CjOiLl/6O6dX2UKGgGaAloD0MI0hito6pJD8CUhpRSlGgVSzJoFkdAoznc56t1ZHV9lChoBmgJaA9DCHqlLEMcqwjAlIaUUpRoFUsyaBZHQKM5mKTB68h1fZQoaAZoCWgPQwjNBplk5AwKwJSGlFKUaBVLMmgWR0CjO0Lsa86FdX2UKGgGaAloD0MIUU1J1uHIB8CUhpRSlGgVSzJoFkdAozr9Da4+bHV9lChoBmgJaA9DCDQRNjy9IhfAlIaUUpRoFUsyaBZHQKM6tvb48EF1fZQoaAZoCWgPQwiUwOYcPOMUwJSGlFKUaBVLMmgWR0CjOnKtPpIMdX2UKGgGaAloD0MIuTgqN1HLBsCUhpRSlGgVSzJoFkdAozwvsJIDo3V9lChoBmgJaA9DCDAS2nIuBQTAlIaUUpRoFUsyaBZHQKM76b+98JF1fZQoaAZoCWgPQwhQbtv3qB8IwJSGlFKUaBVLMmgWR0CjO6QQtjCpdX2UKGgGaAloD0MIu0bLgR4qHMCUhpRSlGgVSzJoFkdAoztfzH0btXV9lChoBmgJaA9DCOkPzTy5pgfAlIaUUpRoFUsyaBZHQKM9C57PY4B1fZQoaAZoCWgPQwhHjnQGRt4XwJSGlFKUaBVLMmgWR0CjPMWXb/OudX2UKGgGaAloD0MI7KNTVz77EcCUhpRSlGgVSzJoFkdAozx/lEJBxHV9lChoBmgJaA9DCBsQIa6cvRfAlIaUUpRoFUsyaBZHQKM8O1Aqur91fZQoaAZoCWgPQwg4LuOmBhoWwJSGlFKUaBVLMmgWR0CjPe6CL/CJdX2UKGgGaAloD0MItoZSexENIMCUhpRSlGgVSzJoFkdAoz2ofGMn7nV9lChoBmgJaA9DCOYeEr73BxPAlIaUUpRoFUsyaBZHQKM9Yn889wF1fZQoaAZoCWgPQwig/UgRGVYWwJSGlFKUaBVLMmgWR0CjPR4/u9eydX2UKGgGaAloD0MIDHcujPRyGcCUhpRSlGgVSzJoFkdAoz7Ra7mMfnV9lChoBmgJaA9DCIBgjh6/NwnAlIaUUpRoFUsyaBZHQKM+i2n889x1fZQoaAZoCWgPQwjIfat14pIFwJSGlFKUaBVLMmgWR0CjPkV3dKukdX2UKGgGaAloD0MIXp7OFaXkAsCUhpRSlGgVSzJoFkdAoz4BWV/tpnV9lChoBmgJaA9DCDi6SnfX+QrAlIaUUpRoFUsyaBZHQKM/ts3yZrp1fZQoaAZoCWgPQwi+Ed2zrjEQwJSGlFKUaBVLMmgWR0CjP3DlYEGJdX2UKGgGaAloD0MIa5vicVH9EsCUhpRSlGgVSzJoFkdAoz8q+lCTlnV9lChoBmgJaA9DCOfG9IQlXgLAlIaUUpRoFUsyaBZHQKM+5uXu3MJ1fZQoaAZoCWgPQwiYamYtBWQawJSGlFKUaBVLMmgWR0CjQJ8BMi8ndX2UKGgGaAloD0MILsVVZd/VE8CUhpRSlGgVSzJoFkdAo0BZDw6QvHV9lChoBmgJaA9DCNsX0At3zh7AlIaUUpRoFUsyaBZHQKNAExVyWAx1fZQoaAZoCWgPQwiHNZVFYdcFwJSGlFKUaBVLMmgWR0CjP87nX/YKdX2UKGgGaAloD0MI4NdIEoRrCcCUhpRSlGgVSzJoFkdAo0GEVk+X7nV9lChoBmgJaA9DCMKKU62FmQfAlIaUUpRoFUsyaBZHQKNBPl0YCQt1fZQoaAZoCWgPQwi6hhkaTxQYwJSGlFKUaBVLMmgWR0CjQPhCtzS1dX2UKGgGaAloD0MItoE7UKf8CMCUhpRSlGgVSzJoFkdAo0C0Uj9n9XV9lChoBmgJaA9DCCXpmsk3OwTAlIaUUpRoFUsyaBZHQKNCcZQ53kh1fZQoaAZoCWgPQwg7cM6I0g4QwJSGlFKUaBVLMmgWR0CjQiuuq3mWdX2UKGgGaAloD0MIs9KkFHQbBMCUhpRSlGgVSzJoFkdAo0HlqpLmIXV9lChoBmgJaA9DCGXEBaBRGgLAlIaUUpRoFUsyaBZHQKNBoX40uUV1fZQoaAZoCWgPQwjw3Hu45OgRwJSGlFKUaBVLMmgWR0CjQ2k12q1gdX2UKGgGaAloD0MIBfnZyHVDGsCUhpRSlGgVSzJoFkdAo0MjfLs8gnV9lChoBmgJaA9DCNieWRKgVhPAlIaUUpRoFUsyaBZHQKNC3XPJJXh1fZQoaAZoCWgPQwjIX1rUJzkPwJSGlFKUaBVLMmgWR0CjQplsHjZMdX2UKGgGaAloD0MIqODwgohUBsCUhpRSlGgVSzJoFkdAo0RfA6+36XV9lChoBmgJaA9DCKmJPh9lhA7AlIaUUpRoFUsyaBZHQKNEGSzw+dN1fZQoaAZoCWgPQwiiYTHqWssUwJSGlFKUaBVLMmgWR0CjQ9MoUi6hdX2UKGgGaAloD0MIVFOSdTi6IMCUhpRSlGgVSzJoFkdAo0OO/SH/LnV9lChoBmgJaA9DCC1A22rWoSTAlIaUUpRoFUsyaBZHQKNFTq46Oo51fZQoaAZoCWgPQwiSdqOP+YAHwJSGlFKUaBVLMmgWR0CjRQjLKV6edX2UKGgGaAloD0MI16IFaFuNDMCUhpRSlGgVSzJoFkdAo0TCyQgcLnV9lChoBmgJaA9DCENwXMZNzRLAlIaUUpRoFUsyaBZHQKNEfqQA+6l1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.89+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 11 10:24:08 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gASVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7f595ab6a560>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f595ac4ed80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gASVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "observation_space": {":type:": "<class 'gym.spaces.dict.Dict'>", ":serialized:": "gASVngMAAAAAAACMD2d5bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwOZ3ltLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUaBCTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowGX3NoYXBllEsDhZSMA2xvd5SMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlGgRjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYowEaGlnaJRoHWgfSwCFlGghh5RSlChLAUsDhZRoFYlDDAAAIEEAACBBAAAgQZR0lGKMDWJvdW5kZWRfYmVsb3eUaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBKMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGKJQwMBAQGUdJRijA1ib3VuZGVkX2Fib3ZllGgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYowKX25wX3JhbmRvbZROdWKMDGRlc2lyZWRfZ29hbJRoDSmBlH2UKGgQaBVoGEsDhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwOFlGgViUMMAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLA4WUaBWJQwwAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsDhZRoNYlDAwEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwOFlGg1iUMDAQEBlHSUYmhBTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQaBVoGEsGhZRoGmgdaB9LAIWUaCGHlFKUKEsBSwaFlGgViUMYAAAgwQAAIMEAACDBAAAgwQAAIMEAACDBlHSUYmgnaB1oH0sAhZRoIYeUUpQoSwFLBoWUaBWJQxgAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUdJRiaC5oHWgfSwCFlGghh5RSlChLAUsGhZRoNYlDBgEBAQEBAZR0lGJoOmgdaB9LAIWUaCGHlFKUKEsBSwaFlGg1iUMGAQEBAQEBlHSUYmhBTnVidWgYTmgQTmhBTnViLg==", "spaces": "OrderedDict([('achieved_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('desired_goal', Box([-10. -10. -10.], [10. 10. 10.], (3,), float32)), ('observation', Box([-10. -10. -10. -10. -10. -10.], [10. 10. 10. 10. 10. 10.], (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gASVkQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLA4WUjANsb3eUjBVudW1weS5jb3JlLm11bHRpYXJyYXmUjAxfcmVjb25zdHJ1Y3SUk5RoBowHbmRhcnJheZSTlEsAhZRDAWKUh5RSlChLAUsDhZRoColDDAAAgL8AAIC/AACAv5R0lGKMBGhpZ2iUaBJoFEsAhZRoFoeUUpQoSwFLA4WUaAqJQwwAAIA/AACAPwAAgD+UdJRijA1ib3VuZGVkX2JlbG93lGgSaBRLAIWUaBaHlFKUKEsBSwOFlGgHjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiiUMDAQEBlHSUYowNYm91bmRlZF9hYm92ZZRoEmgUSwCFlGgWh5RSlChLAUsDhZRoKolDAwEBAZR0lGKMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_np_random": null}, "n_envs": 4, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679108753686302291, "learning_rate": 0.0007, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gASVwQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsBSwFLE0MEiABTAJROhZQpjAFflIWUjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIAAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEgvb3B0L2NvbmRhL2xpYi9weXRob24zLjcvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpSMHGNsb3VkcGlja2xlLmNsb3VkcGlja2xlX2Zhc3SUjBJfZnVuY3Rpb25fc2V0c3RhdGWUk5RoH32UfZQoaBZoDYwMX19xdWFsbmFtZV9flIwZY29uc3RhbnRfZm4uPGxvY2Fscz4uZnVuY5SMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBeMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RHP0bwBo24useFlFKUhZSMF19jbG91ZHBpY2tsZV9zdWJtb2R1bGVzlF2UjAtfX2dsb2JhbHNfX5R9lHWGlIZSMC4="}, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzB38QI/QbuVPW0lgj538QI/QbuVPW0lgj538QI/QbuVPW0lgj538QI/QbuVPW0lgj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMPMOfL9f2ls/5P+7vw4ezL+TD4G8Vtm8vkCTjb9S5vu+Bw+YvwN7sb/qdM+/PfIKv5R0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2B38QI/QbuVPW0lgj7YAi098juEOxNeyDx38QI/QbuVPW0lgj7YAi098juEOxNeyDx38QI/QbuVPW0lgj7YAi098juEOxNeyDx38QI/QbuVPW0lgj7YAi098juEOxNeyDyUdJRidS4=", "achieved_goal": "[[0.51149696 0.07311106 0.2541918 ]\n [0.51149696 0.07311106 0.2541918 ]\n [0.51149696 0.07311106 0.2541918 ]\n [0.51149696 0.07311106 0.2541918 ]]", "desired_goal": "[[-0.9846031 0.8588008 -1.4687467 ]\n [-1.5946672 -0.0157545 -0.36884564]\n [-1.1060562 -0.49199158 -1.1879586 ]\n [-1.3865665 -1.6207554 -0.54275876]]", "observation": "[[0.51149696 0.07311106 0.2541918 0.04223904 0.00403547 0.02445892]\n [0.51149696 0.07311106 0.2541918 0.04223904 0.00403547 0.02445892]\n [0.51149696 0.07311106 0.2541918 0.04223904 0.00403547 0.02445892]\n [0.51149696 0.07311106 0.2541918 0.04223904 0.00403547 0.02445892]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gASVjAAAAAAAAACMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMDF9yZWNvbnN0cnVjdJSTlIwFbnVtcHmUjAduZGFycmF5lJOUSwCFlEMBYpSHlFKUKEsBSwSFlGgDjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYolDBAEBAQGUdJRiLg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gASV2gEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwVbnVtcHkuY29yZS5tdWx0aWFycmF5lIwMX3JlY29uc3RydWN0lJOUjAVudW1weZSMB25kYXJyYXmUk5RLAIWUQwFilIeUUpQoSwFLBEsDhpRoCIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKJQzDqch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj7qch09GWwarEMjSj6UdJRijAxkZXNpcmVkX2dvYWyUaAdoCksAhZRoDIeUUpQoSwFLBEsDhpRoFIlDMD0+fr0972A90tEZPiZ36z2XWQK+i8DyPeprlL2cpPS98ysbPngtmr0+6Bi+C4LtPZR0lGKMC29ic2VydmF0aW9ulGgHaApLAIWUaAyHlFKUKEsBSwRLBoaUaBSJQ2Dqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUdJRidS4=", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.06207107 0.05491566 0.15021446]\n [ 0.11497335 -0.12729488 0.11853131]\n [-0.07247145 -0.11945459 0.15153484]\n [-0.07528204 -0.14932343 0.11597069]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIF5tWCoHMFMCUhpRSlIwBbJRLMowBdJRHQLPuSTYukDZ1fZQoaAZoCWgPQwipTZzc7zAcwJSGlFKUaBVLMmgWR0Cz7iaNAC4jdX2UKGgGaAloD0MIt+ulKQKcEMCUhpRSlGgVSzJoFkdAs+4Df/FR53V9lChoBmgJaA9DCDmdZKvLOS7AlIaUUpRoFUsyaBZHQLPt4MhX8wZ1fZQoaAZoCWgPQwjjNEQV/jQhwJSGlFKUaBVLMmgWR0Cz7sn6MzdldX2UKGgGaAloD0MIueLiqNyMJMCUhpRSlGgVSzJoFkdAs+6neaa1C3V9lChoBmgJaA9DCKnCn+HN6i7AlIaUUpRoFUsyaBZHQLPuhGIbfgt1fZQoaAZoCWgPQwiZEHNJ1WYZwJSGlFKUaBVLMmgWR0Cz7mG2w3YMdX2UKGgGaAloD0MIJAwDllzFJ8CUhpRSlGgVSzJoFkdAs+9ITzundnV9lChoBmgJaA9DCPPK9baZqhTAlIaUUpRoFUsyaBZHQLPvJaNuLrJ1fZQoaAZoCWgPQwjmP6Tfvv4xwJSGlFKUaBVLMmgWR0Cz7wKLbYbsdX2UKGgGaAloD0MI7wIlBRZQGcCUhpRSlGgVSzJoFkdAs+7f6JqIrXV9lChoBmgJaA9DCIbI6ev5WibAlIaUUpRoFUsyaBZHQLPvykgwGnp1fZQoaAZoCWgPQwimRBK9jMogwJSGlFKUaBVLMmgWR0Cz76fOyE+QdX2UKGgGaAloD0MIGt1B7EwBMMCUhpRSlGgVSzJoFkdAs++Euh9LH3V9lChoBmgJaA9DCI8ZqIx/XyPAlIaUUpRoFUsyaBZHQLPvYdeIEbJ1fZQoaAZoCWgPQwhS81XysTsZwJSGlFKUaBVLMmgWR0Cz8ESrksBidX2UKGgGaAloD0MICTauf9e3GcCUhpRSlGgVSzJoFkdAs/Ah/qgRLHV9lChoBmgJaA9DCELSp1X0lx/AlIaUUpRoFUsyaBZHQLPv/u0kWyl1fZQoaAZoCWgPQwgEr5Y7M4ERwJSGlFKUaBVLMmgWR0Cz79w6QvHtdX2UKGgGaAloD0MIc9nonJ/iFcCUhpRSlGgVSzJoFkdAs/DZwaR6nnV9lChoBmgJaA9DCAU1fAvrRirAlIaUUpRoFUsyaBZHQLPwtzcAR051fZQoaAZoCWgPQwgHz4QmiekwwJSGlFKUaBVLMmgWR0Cz8JQiaAnVdX2UKGgGaAloD0MIZRh3g2hNKcCUhpRSlGgVSzJoFkdAs/BxaTwDvHV9lChoBmgJaA9DCJVjsrj/CCPAlIaUUpRoFUsyaBZHQLPxW+36Q/51fZQoaAZoCWgPQwhUVWgglp0RwJSGlFKUaBVLMmgWR0Cz8Tl2q1gIdX2UKGgGaAloD0MIjiEAOPZMIMCUhpRSlGgVSzJoFkdAs/EWRYA80XV9lChoBmgJaA9DCDF5A8x8GzHAlIaUUpRoFUsyaBZHQLPw85D7ZWd1fZQoaAZoCWgPQwgsRfKVQI4ywJSGlFKUaBVLMmgWR0Cz8dvvKEFodX2UKGgGaAloD0MIBAMIH0psKMCUhpRSlGgVSzJoFkdAs/G5XbM5fnV9lChoBmgJaA9DCH2TpkHRHCzAlIaUUpRoFUsyaBZHQLPxlkiD/VB1fZQoaAZoCWgPQwj8VYDvNr8pwJSGlFKUaBVLMmgWR0Cz8XOPeYUndX2UKGgGaAloD0MIX0ax3NLOMMCUhpRSlGgVSzJoFkdAs/Jl7a7EpHV9lChoBmgJaA9DCPoq+dhd2CLAlIaUUpRoFUsyaBZHQLPyQ0gKWs11fZQoaAZoCWgPQwiFe2XeqnsbwJSGlFKUaBVLMmgWR0Cz8iA/C66KdX2UKGgGaAloD0MIouwt5XyBIMCUhpRSlGgVSzJoFkdAs/H9kNFz+3V9lChoBmgJaA9DCIKo+wCkXiXAlIaUUpRoFUsyaBZHQLPy5qur6tV1fZQoaAZoCWgPQwjhXpm36iozwJSGlFKUaBVLMmgWR0Cz8sQo9cKPdX2UKGgGaAloD0MIS+guibO6LMCUhpRSlGgVSzJoFkdAs/KhD5TIenV9lChoBmgJaA9DCFXcuMX8PBzAlIaUUpRoFUsyaBZHQLPyfmlqJuV1fZQoaAZoCWgPQwhslstG5wwswJSGlFKUaBVLMmgWR0Cz82sscyWSdX2UKGgGaAloD0MIMbJkjuW9F8CUhpRSlGgVSzJoFkdAs/NIn8baRXV9lChoBmgJaA9DCFYMVwdARC7AlIaUUpRoFUsyaBZHQLPzJY+B6KN1fZQoaAZoCWgPQwhM4NbdPEUUwJSGlFKUaBVLMmgWR0Cz8wLLU1AJdX2UKGgGaAloD0MIXmbYKOvnFsCUhpRSlGgVSzJoFkdAs/Ps4FRpDnV9lChoBmgJaA9DCGt9kdCWsyzAlIaUUpRoFUsyaBZHQLPzyl4TsY51fZQoaAZoCWgPQwjjjGFO0CYOwJSGlFKUaBVLMmgWR0Cz86c7U5MldX2UKGgGaAloD0MI3A4Ni1G7M8CUhpRSlGgVSzJoFkdAs/OEcPvrnnV9lChoBmgJaA9DCC5x5IHI+irAlIaUUpRoFUsyaBZHQLP0cFIuoP11fZQoaAZoCWgPQwi+afrsgJsYwJSGlFKUaBVLMmgWR0Cz9E2z0HyFdX2UKGgGaAloD0MIC0W6n1PoIcCUhpRSlGgVSzJoFkdAs/QqcbzbvnV9lChoBmgJaA9DCOzCD86nFifAlIaUUpRoFUsyaBZHQLP0B8XN1Qt1fZQoaAZoCWgPQwi0BBkBFZ4cwJSGlFKUaBVLMmgWR0Cz9RFMuez2dX2UKGgGaAloD0MIV0J3SZylFsCUhpRSlGgVSzJoFkdAs/TvHsC1Z3V9lChoBmgJaA9DCHkCYadY3SbAlIaUUpRoFUsyaBZHQLP0zM8YAKh1fZQoaAZoCWgPQwhYqDXNO4owwJSGlFKUaBVLMmgWR0Cz9KqoddVvdX2UKGgGaAloD0MIBBxClZqtJsCUhpRSlGgVSzJoFkdAs/W60Xxe9nV9lChoBmgJaA9DCAn/ImjMmDHAlIaUUpRoFUsyaBZHQLP1mGB4D9x1fZQoaAZoCWgPQwiitDf4wiwhwJSGlFKUaBVLMmgWR0Cz9XUyk9EDdX2UKGgGaAloD0MIyQVn8PeLEcCUhpRSlGgVSzJoFkdAs/VSl3yI6HV9lChoBmgJaA9DCJ3WbVD7bS7AlIaUUpRoFUsyaBZHQLP2PdWQwK11fZQoaAZoCWgPQwgVG/M64qAXwJSGlFKUaBVLMmgWR0Cz9hs3dbgTdX2UKGgGaAloD0MIHvtZLEV2M8CUhpRSlGgVSzJoFkdAs/X4K+i8F3V9lChoBmgJaA9DCAsIrYcvRzDAlIaUUpRoFUsyaBZHQLP11Xt0FKV1fZQoaAZoCWgPQwiWeauuQxUawJSGlFKUaBVLMmgWR0Cz9sI4uK4ydX2UKGgGaAloD0MItYzUeyp3LsCUhpRSlGgVSzJoFkdAs/aftkWhy3V9lChoBmgJaA9DCOaxZmSQ2y3AlIaUUpRoFUsyaBZHQLP2fJuEVWV1fZQoaAZoCWgPQwiYo8fvbeoYwJSGlFKUaBVLMmgWR0Cz9lnUtqYadX2UKGgGaAloD0MIgAuyZfmmMMCUhpRSlGgVSzJoFkdAs/dKxoqTbHV9lChoBmgJaA9DCJfiqrLv6hvAlIaUUpRoFUsyaBZHQLP3KLGrCFd1fZQoaAZoCWgPQwhgrdo1IU0twJSGlFKUaBVLMmgWR0Cz9wWlyimEdX2UKGgGaAloD0MIUUtzK4SVIMCUhpRSlGgVSzJoFkdAs/bizTnaFnV9lChoBmgJaA9DCCkJibSNYzPAlIaUUpRoFUsyaBZHQLP30Aood+51fZQoaAZoCWgPQwgkfsUaLpomwJSGlFKUaBVLMmgWR0Cz963JT2nLdX2UKGgGaAloD0MIhVs+kpLmMsCUhpRSlGgVSzJoFkdAs/eKtjkMkXV9lChoBmgJaA9DCDYC8bp+gSnAlIaUUpRoFUsyaBZHQLP3aAZ88cN1fZQoaAZoCWgPQwhSt7OvPIgawJSGlFKUaBVLMmgWR0Cz+GE96kZadX2UKGgGaAloD0MIO4kI/yLYIsCUhpRSlGgVSzJoFkdAs/g+nwXqJXV9lChoBmgJaA9DCMbAOo4fWhbAlIaUUpRoFUsyaBZHQLP4G4mkWRB1fZQoaAZoCWgPQwhCX3r7c6kwwJSGlFKUaBVLMmgWR0Cz9/jLjghsdX2UKGgGaAloD0MIJjlgV5OTMsCUhpRSlGgVSzJoFkdAs/jkmmce83V9lChoBmgJaA9DCI9U3/lFaSrAlIaUUpRoFUsyaBZHQLP4wg7YChh1fZQoaAZoCWgPQwhqvHSTGFAywJSGlFKUaBVLMmgWR0Cz+J717IDHdX2UKGgGaAloD0MIwQDChxINH8CUhpRSlGgVSzJoFkdAs/h8duHerXV9lChoBmgJaA9DCGzPLAlQoyLAlIaUUpRoFUsyaBZHQLP5bzXz19R1fZQoaAZoCWgPQwhO0ZFc/rsowJSGlFKUaBVLMmgWR0Cz+Uz0Yj0MdX2UKGgGaAloD0MIWvJ4Wn60MMCUhpRSlGgVSzJoFkdAs/kp5hScb3V9lChoBmgJaA9DCP5/nDBh5C7AlIaUUpRoFUsyaBZHQLP5BxmCiAV1fZQoaAZoCWgPQwiIug9AajMmwJSGlFKUaBVLMmgWR0Cz+f+89Oh1dX2UKGgGaAloD0MIHNMTlnjAMcCUhpRSlGgVSzJoFkdAs/ndNKyv93V9lChoBmgJaA9DCBTtKqT85BPAlIaUUpRoFUsyaBZHQLP5ujLjght1fZQoaAZoCWgPQwhE+BdBY+YRwJSGlFKUaBVLMmgWR0Cz+Zfio86ndX2UKGgGaAloD0MID7iumBFaMMCUhpRSlGgVSzJoFkdAs/qGxfOUuHV9lChoBmgJaA9DCF1Std0EFyLAlIaUUpRoFUsyaBZHQLP6ZEtuk1x1fZQoaAZoCWgPQwiF6ubibysswJSGlFKUaBVLMmgWR0Cz+kEyP+4tdX2UKGgGaAloD0MIvJF55A9mJcCUhpRSlGgVSzJoFkdAs/oee05U+HV9lChoBmgJaA9DCHxinSrf4xrAlIaUUpRoFUsyaBZHQLP7BjB2wFF1fZQoaAZoCWgPQwibWOAruvUewJSGlFKUaBVLMmgWR0Cz+uOLJjlQdX2UKGgGaAloD0MI4XoUrkdRJ8CUhpRSlGgVSzJoFkdAs/rASh8IA3V9lChoBmgJaA9DCNDRqpZ0vCnAlIaUUpRoFUsyaBZHQLP6naUzKtB1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gASVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 100000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "system_info": {"OS": "Linux-5.15.89+-x86_64-with-debian-bullseye-sid # 1 SMP Sat Mar 11 10:24:08 UTC 2023", "Python": "3.7.12", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.0", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -7.573960273340345, "std_reward": 1.7307892990982228, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-03-18T04:31:12.052355"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 3731
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:eb8f4c099a6f544a7c8580e4f866cfdcb5a4aa38adb4e198f843a4340610ea26
|
3 |
size 3731
|