vits_rasa_13 / tokenization_vits.py
AshwinSankar's picture
Upload tokenizer
1e1bace verified
raw
history blame
7.18 kB
"""Tokenization class for VITS."""
import json
import os
import re
from typing import Any, Dict, List, Optional, Tuple, Union
from transformers.tokenization_utils import PreTrainedTokenizer
from transformers.utils import logging
logger = logging.get_logger(__name__)
VOCAB_FILES_NAMES = {"vocab_file": "vocab.json"}
def has_non_roman_characters(input_string):
# Find any character outside the ASCII range
non_roman_pattern = re.compile(r"[^\x00-\x7F]")
# Search the input string for non-Roman characters
match = non_roman_pattern.search(input_string)
has_non_roman = match is not None
return has_non_roman
class IndicVitsTokenizer(PreTrainedTokenizer):
"""
Construct a VITS tokenizer.
This tokenizer inherits from [`PreTrainedTokenizer`] which contains most of the main methods. Users should refer to
this superclass for more information regarding those methods.
Args:
vocab_file (`str`):
Path to the vocabulary file.
language (`str`, *optional*):
Language identifier.
add_blank (`bool`, *optional*, defaults to `True`):
Whether to insert token id 0 in between the other tokens.
normalize (`bool`, *optional*, defaults to `True`):
Whether to normalize the input text by removing all casing and punctuation.
phonemize (`bool`, *optional*, defaults to `True`):
Whether to convert the input text into phonemes.
is_uroman (`bool`, *optional*, defaults to `False`):
Whether the `uroman` Romanizer needs to be applied to the input text prior to tokenizing.
"""
vocab_files_names = VOCAB_FILES_NAMES
model_input_names = ["input_ids", "attention_mask"]
def __init__(
self,
vocab_file,
pad_token="<pad>",
unk_token="<unk>",
language=None,
add_blank=True,
normalize=True,
phonemize=True,
is_uroman=False,
**kwargs,
) -> None:
with open(vocab_file, encoding="utf-8") as vocab_handle:
self.encoder = json.load(vocab_handle)
self.decoder = {v: k for k, v in self.encoder.items()}
self.language = language
self.add_blank = add_blank
self.normalize = normalize
self.phonemize = phonemize
self.is_uroman = is_uroman
super().__init__(
pad_token=pad_token,
unk_token=unk_token,
language=language,
add_blank=add_blank,
normalize=normalize,
phonemize=phonemize,
is_uroman=is_uroman,
**kwargs,
)
@property
def vocab_size(self):
return len(self.encoder)
def get_vocab(self):
vocab = {self.convert_ids_to_tokens(i): i for i in range(self.vocab_size)}
vocab.update(self.added_tokens_encoder)
return vocab
def normalize_text(self, input_string):
"""Lowercase the input string, respecting any special token ids that may be part or entirely upper-cased."""
all_vocabulary = list(self.encoder.keys()) + list(self.added_tokens_encoder.keys())
filtered_text = ""
i = 0
while i < len(input_string):
found_match = False
for word in all_vocabulary:
if input_string[i : i + len(word)] == word:
filtered_text += word
i += len(word)
found_match = True
break
if not found_match:
filtered_text += input_string[i].lower()
i += 1
return filtered_text
def prepare_for_tokenization(
self, text: str, is_split_into_words: bool = False, normalize: Optional[bool] = None, **kwargs
) -> Tuple[str, Dict[str, Any]]:
"""
Performs any necessary transformations before tokenization.
This method should pop the arguments from kwargs and return the remaining `kwargs` as well. We test the
`kwargs` at the end of the encoding process to be sure all the arguments have been used.
Args:
text (`str`):
The text to prepare.
is_split_into_words (`bool`, *optional*, defaults to `False`):
Whether or not the input is already pre-tokenized (e.g., split into words). If set to `True`, the
tokenizer assumes the input is already split into words (for instance, by splitting it on whitespace)
which it will tokenize.
normalize (`bool`, *optional*, defaults to `None`):
Whether or not to apply punctuation and casing normalization to the text inputs. Typically, VITS is
trained on lower-cased and un-punctuated text. Hence, normalization is used to ensure that the input
text consists only of lower-case characters.
kwargs (`Dict[str, Any]`, *optional*):
Keyword arguments to use for the tokenization.
Returns:
`Tuple[str, Dict[str, Any]]`: The prepared text and the unused kwargs.
"""
normalize = normalize if normalize is not None else self.normalize
if normalize:
# normalise for casing
text = self.normalize_text(text)
# strip any chars outside of the vocab (punctuation)
text = "".join(list(filter(lambda char: char in self.encoder, text))).strip()
return text, kwargs
def _tokenize(self, text: str) -> List[str]:
"""Tokenize a string by inserting the `<pad>` token at the boundary between adjacent characters."""
tokens = list(text)
return tokens
def convert_tokens_to_string(self, tokens: List[str]) -> str:
if self.add_blank and len(tokens) > 1:
tokens = tokens[1::2]
return "".join(tokens)
def convert_tokens_to_ids(self, tokens: List[str]) -> List[int]:
ids = []
for token in tokens:
ids.append(self._convert_token_to_id(token))
if self.add_blank:
interspersed = [0] * (len(ids) * 2 + 1)
interspersed[1::2] = ids
ids = interspersed
return ids
def _convert_token_to_id(self, token):
"""Converts a token (str) in an id using the vocab."""
return self.encoder.get(token, self.encoder.get(self.unk_token))
def _convert_id_to_token(self, index):
"""Converts an index (integer) in a token (str) using the vocab."""
return self.decoder.get(index)
def save_vocabulary(self, save_directory: str, filename_prefix: Optional[str] = None) -> Union[Tuple[str], None]:
if not os.path.isdir(save_directory):
logger.error(f"Vocabulary path ({save_directory}) should be a directory")
return
vocab_file = os.path.join(
save_directory, (filename_prefix + "-" if filename_prefix else "") + VOCAB_FILES_NAMES["vocab_file"]
)
with open(vocab_file, "w", encoding="utf-8") as f:
f.write(json.dumps(self.encoder, indent=2, sort_keys=True, ensure_ascii=False) + "\n")
return (vocab_file,)