Update README.md
Browse files
README.md
CHANGED
|
@@ -1,3 +1,137 @@
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
|
|
|
|
|
|
| 3 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
---
|
| 2 |
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- ESG
|
| 5 |
---
|
| 6 |
+
## Main information
|
| 7 |
+
We introduce the model for multilabel ESG risks classification. There is 47 classes methodology with granularial risk definition.
|
| 8 |
+
|
| 9 |
+
## Usage
|
| 10 |
+
```python
|
| 11 |
+
|
| 12 |
+
from transformers import MPNetPreTrainedModel, MPNetModel
|
| 13 |
+
import torch
|
| 14 |
+
#Mean Pooling - Take attention mask into account for correct averaging
|
| 15 |
+
def mean_pooling(model_output, attention_mask):
|
| 16 |
+
token_embeddings = model_output #First element of model_output contains all token embeddings
|
| 17 |
+
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
|
| 18 |
+
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
|
| 19 |
+
|
| 20 |
+
# Definition of ESGify class because of custom,sentence-transformers like, mean pooling function and classifier head
|
| 21 |
+
class ESGify(MPNetPreTrainedModel):
|
| 22 |
+
"""Model for Classification ESG risks from text."""
|
| 23 |
+
|
| 24 |
+
def __init__(self,config): #tuning only the head
|
| 25 |
+
"""
|
| 26 |
+
"""
|
| 27 |
+
super().__init__(config)
|
| 28 |
+
# Instantiate Parts of model
|
| 29 |
+
self.mpnet = MPNetModel(config,add_pooling_layer=False)
|
| 30 |
+
self.classifier = torch.nn.Sequential(OrderedDict([('norm',torch.nn.BatchNorm1d(768)),
|
| 31 |
+
('linear',torch.nn.Linear(768,512)),
|
| 32 |
+
('act',torch.nn.ReLU()),
|
| 33 |
+
('batch_n',torch.nn.BatchNorm1d(512)),
|
| 34 |
+
('drop_class', torch.nn.Dropout(0.2)),
|
| 35 |
+
('class_l',torch.nn.Linear(512 ,47))]))
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
def forward(self, input_ids, attention_mask):
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
# Feed input to mpnet model
|
| 42 |
+
outputs = self.mpnet(input_ids=input_ids,
|
| 43 |
+
attention_mask=attention_mask)
|
| 44 |
+
|
| 45 |
+
# mean pooling dataset
|
| 46 |
+
logits = self.classifier( mean_pooling(outputs['last_hidden_state'],attention_mask))
|
| 47 |
+
# Feed input to classifier to compute logits
|
| 48 |
+
|
| 49 |
+
return logits
|
| 50 |
+
|
| 51 |
+
model = ESGify.from_pretrained('ai-lab/ESGify')
|
| 52 |
+
tokenizer = AutoTokenizer.from_pretrained('ai-lab/ESGify')
|
| 53 |
+
texts = ['text1','text2']
|
| 54 |
+
to_model = tokenizer.batch_encode_plus(
|
| 55 |
+
texts,
|
| 56 |
+
add_special_tokens=True,
|
| 57 |
+
max_length=512,
|
| 58 |
+
return_token_type_ids=False,
|
| 59 |
+
padding="max_length",
|
| 60 |
+
truncation=True,
|
| 61 |
+
return_attention_mask=True,
|
| 62 |
+
return_tensors='pt',
|
| 63 |
+
)
|
| 64 |
+
results = model(**to_model)
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# We also recommend preprocess texts with using FLAIR model
|
| 68 |
+
|
| 69 |
+
from flair.data import Sentence
|
| 70 |
+
from flair.nn import Classifier
|
| 71 |
+
from torch.utils.data import DataLoader
|
| 72 |
+
from nltk.corpus import stopwords
|
| 73 |
+
from nltk.tokenize import word_tokenize
|
| 74 |
+
|
| 75 |
+
stop_words = set(stopwords.words('english'))
|
| 76 |
+
tagger = Classifier.load('ner-ontonotes-large')
|
| 77 |
+
tag_list = ['FAC','LOC','ORG','PERSON']
|
| 78 |
+
texts_with_masks = []
|
| 79 |
+
for example_sent in texts:
|
| 80 |
+
|
| 81 |
+
word_tokens = word_tokenize(example_sent)
|
| 82 |
+
# converts the words in word_tokens to lower case and then checks whether
|
| 83 |
+
#they are present in stop_words or not
|
| 84 |
+
for w in word_tokens:
|
| 85 |
+
if w.lower() not in stop_words:
|
| 86 |
+
filtered_sentence.append(w)
|
| 87 |
+
# make a sentence
|
| 88 |
+
sentence = Sentence(' '.join(filtered_sentence))
|
| 89 |
+
# run NER over sentence
|
| 90 |
+
tagger.predict(sentence)
|
| 91 |
+
sent = ' '.join(filtered_sentence)
|
| 92 |
+
k = 0
|
| 93 |
+
new_string = ''
|
| 94 |
+
start_t = 0
|
| 95 |
+
for i in sentence.get_labels():
|
| 96 |
+
info = i.to_dict()
|
| 97 |
+
val = info['value']
|
| 98 |
+
if info['confidence']>0.8 and val in tag_list :
|
| 99 |
+
|
| 100 |
+
if i.data_point.start_position>start_t :
|
| 101 |
+
new_string+=sent[start_t:i.data_point.start_position]
|
| 102 |
+
start_t = i.data_point.end_position
|
| 103 |
+
new_string+= f'<{val}>'
|
| 104 |
+
new_string+=sent[start_t:-1]
|
| 105 |
+
texts_with_masks.append(new_string)
|
| 106 |
+
|
| 107 |
+
to_model = tokenizer.batch_encode_plus(
|
| 108 |
+
texts_with_masks,
|
| 109 |
+
add_special_tokens=True,
|
| 110 |
+
max_length=512,
|
| 111 |
+
return_token_type_ids=False,
|
| 112 |
+
padding="max_length",
|
| 113 |
+
truncation=True,
|
| 114 |
+
return_attention_mask=True,
|
| 115 |
+
return_tensors='pt',
|
| 116 |
+
)
|
| 117 |
+
results = model(**to_model)
|
| 118 |
+
```
|
| 119 |
+
|
| 120 |
+
------
|
| 121 |
+
|
| 122 |
+
## Background
|
| 123 |
+
|
| 124 |
+
The project aims to develop the ESG Risks classification model with a custom ESG risks definition methodology.
|
| 125 |
+
|
| 126 |
+
|
| 127 |
+
## Training procedure
|
| 128 |
+
|
| 129 |
+
### Pre-training
|
| 130 |
+
|
| 131 |
+
We use the pretrained [`microsoft/mpnet-base`](https://huggingface.co/microsoft/mpnet-base) model.
|
| 132 |
+
Next, we do the domain-adaptation procedure by Mask Language Modeling pertaining with using texts of ESG reports.
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
#### Training data
|
| 136 |
+
|
| 137 |
+
We use the ESG news dataset of 2000 texts with manually annotation of ESG specialists.
|