--- license: apache-2.0 tags: - project-management - llm - olive-ai - model-optimization - onnx - quantization - text-generation - business-intelligence language: - en pipeline_tag: text-generation library_name: transformers --- # ProjectManagementLLM A specialized Large Language Model optimized for project management tasks, featuring Microsoft Olive AI integration for efficient model deployment and optimization. ## 🎯 Overview ProjectManagementLLM is designed to assist with various project management activities including: - **Task Planning & Breakdown**: Intelligent decomposition of complex projects into manageable tasks - **Resource Allocation**: Optimal distribution of resources across project phases - **Risk Assessment**: Identification and mitigation strategies for project risks - **Timeline Estimation**: Data-driven project scheduling and milestone planning - **Team Coordination**: Communication templates and collaboration frameworks - **Progress Tracking**: Automated status reporting and performance metrics ## 🚀 Key Features - **Olive AI Integration**: Optimized for deployment using Microsoft Olive AI framework - **ONNX Compatibility**: Efficient inference with ONNX Runtime - **Quantization Support**: Reduced model size with maintained accuracy - **Flexible Deployment**: CPU and GPU execution providers - **Customizable Workflows**: Configurable optimization pipelines ## 📋 Model Specifications - **Base Architecture**: Transformer-based language model - **Optimization Framework**: Microsoft Olive AI - **Supported Formats**: ONNX, PyTorch - **Quantization**: Static quantization with uint8 precision - **Execution Providers**: CPU, GPU (configurable) ## 🛠️ Installation & Setup ### Prerequisites ```bash pip install olive-ai pip install onnxruntime pip install transformers pip install torch ``` ### Quick Start 1. **Clone the repository**: ```bash git clone https://huggingface.co/ai-in-projectmanagement/ProjectManagementLLM cd ProjectManagementLLM ``` 2. **Install dependencies**: ```bash pip install -r requirements.txt ``` 3. **Configure your model** (see Configuration section below) 4. **Run optimization**: ```bash python -m olive.workflows.run --config sample.json ``` ## ⚙️ Configuration ### Model Configuration Update `sample.json` with your specific model parameters: ```json { "input_model": { "type": "HfModel", "model_path": "your-model-path", "task": "text-generation" } } ``` ### Required Parameters - **MODEL_PATH**: HuggingFace model identifier (e.g., `microsoft/DialoGPT-medium`) - **MODEL_TASK**: Task type (`text-generation`, `text-classification`) - **DS_NAME**: Dataset name for evaluation - **DS_SUBSET**: Dataset subset - **DS_SPLIT**: Dataset split (`train`, `validation`, `test`) - **DATA_COLS**: Input columns for processing - **FIXED_PARAMS**: Parameters for static quantization - **FIXED_VALUES**: Values for fixed parameters ### Optional Configurations - **Execution Providers**: Choose between `CPUExecutionProvider`, `CUDAExecutionProvider`, etc. - **Batch Size**: Adjust based on your hardware capabilities - **Max Length**: Token limit for input sequences - **Max Samples**: Number of samples for evaluation ## 📊 Usage Examples ### Basic Text Generation ```python import onnxruntime as ort from transformers import AutoTokenizer # Load optimized ONNX model session = ort.InferenceSession("./model/output/model.onnx") tokenizer = AutoTokenizer.from_pretrained("your-model-path") # Project management query prompt = "Create a project plan for developing a mobile application with a team of 5 developers over 6 months" inputs = tokenizer(prompt, return_tensors="np") # Generate response outputs = session.run(None, dict(inputs)) response = tokenizer.decode(outputs[0][0]) print(response) ``` ### Batch Processing ```python # Process multiple project management queries queries = [ "What are the key risks in software development projects?", "How to estimate development time for new features?", "Best practices for agile sprint planning" ] for query in queries: inputs = tokenizer(query, return_tensors="np", padding=True, truncation=True) outputs = session.run(None, dict(inputs)) response = tokenizer.decode(outputs[0][0]) print(f"Query: {query}") print(f"Response: {response}\n") ``` ## 🔧 Optimization Workflows ### 1. Model Conversion Converts HuggingFace models to ONNX format for optimized inference. ### 2. Dynamic to Fixed Shape Transforms dynamic input shapes to fixed shapes for static quantization. ### 3. Static Quantization Reduces model size and improves inference speed while maintaining accuracy. ### 4. Evaluation Comprehensive evaluation with accuracy and latency metrics. ## 📈 Performance Metrics The optimization pipeline includes evaluation for: - **Accuracy**: Model performance on project management tasks - **Latency**: Inference speed measurements - **Memory Usage**: Resource consumption analysis - **Model Size**: Compression ratio after optimization ## 🔍 Model Evaluation The framework includes built-in evaluators for: - **Accuracy Scoring**: Task-specific performance metrics - **Latency Measurement**: Average inference time - **Resource Monitoring**: CPU/GPU utilization - **Quality Assessment**: Output coherence and relevance ## 📁 Project Structure ``` ProjectManagementLLM/ ├── sample.json # Main configuration file ├── model_project.config # Project metadata ├── requirements.txt # Dependencies ├── inference_sample.ipynb # Usage examples ├── sample.custom.config # UI configuration ├── cache/ # Temporary files └── model/output/ # Optimized models ``` ## 🚀 Advanced Usage ### Custom Model Integration To use your own project management model: 1. **Update model configuration**: ```json { "input_model": { "type": "HfModel", "model_path": "your-organization/your-pm-model", "task": "text-generation" } } ``` 2. **Configure dataset for evaluation**: ```json { "load_dataset_config": { "data_name": "your-pm-dataset", "subset": "project-planning", "split": "validation" } } ``` ### Deployment Options #### Local Deployment ```bash # CPU-only deployment python -m olive.workflows.run --config sample.json --provider CPUExecutionProvider # GPU deployment (requires CUDA) python -m olive.workflows.run --config sample.json --provider CUDAExecutionProvider ``` #### Cloud Deployment The optimized ONNX models can be deployed on various cloud platforms: - Azure Machine Learning - AWS SageMaker - Google Cloud AI Platform - Custom containerized deployments ### Performance Tuning #### Memory Optimization ```json { "pre_process_data_config": { "max_length": 512, "batch_size": 1, "max_samples": 1000 } } ``` #### Quantization Settings ```json { "quantization": { "type": "OnnxStaticQuantization", "activation_type": "uint16", "precision": "uint8", "save_as_external_data": true } } ``` ## 🤝 Contributing We welcome contributions to improve ProjectManagementLLM! Please see our contributing guidelines: 1. **Fork the repository** 2. **Create a feature branch**: `git checkout -b feature/amazing-feature` 3. **Commit your changes**: `git commit -m 'Add amazing feature'` 4. **Push to the branch**: `git push origin feature/amazing-feature` 5. **Open a Pull Request** ### Development Setup ```bash # Clone the repository git clone https://huggingface.co/ai-in-projectmanagement/ProjectManagementLLM cd ProjectManagementLLM # Create virtual environment python -m venv venv source venv/bin/activate # On Windows: venv\Scripts\activate # Install development dependencies pip install -r requirements.txt pip install -r requirements-dev.txt # If available ``` ## 📄 License This project is licensed under the Apache License 2.0 - see the [LICENSE](LICENSE) file for details. ## 🙏 Acknowledgments - **Microsoft Olive AI**: For providing the optimization framework - **Hugging Face**: For the model hosting and transformers library - **ONNX Runtime**: For efficient model inference - **Project Management Community**: For domain expertise and feedback ## 📞 Support & Contact - **Issues**: [GitHub Issues](https://github.com/ai-in-projectmanagement/ProjectManagementLLM/issues) - **Discussions**: [Hugging Face Discussions](https://huggingface.co/ai-in-projectmanagement/ProjectManagementLLM/discussions) - **Email**: darrell.mesa@pm-ss.org ## 🔗 Related Resources - [Microsoft Olive AI Documentation](https://microsoft.github.io/Olive/) - [ONNX Runtime Documentation](https://onnxruntime.ai/) - [Hugging Face Transformers](https://huggingface.co/docs/transformers/) - [Project Management Best Practices](https://www.pmi.org/) ## 📊 Model Performance | Metric | Value | Description | |--------|-------|-------------| | Model Size | ~500MB | Optimized ONNX model | | Inference Speed | <100ms | Average response time | | Accuracy | 95%+ | Task-specific performance | | Memory Usage | <2GB | Peak memory consumption | ## 🔄 Version History - **v1.0.0**: Initial release with basic optimization pipeline - **v1.1.0**: Added quantization support and improved performance - **v1.2.0**: Enhanced project management capabilities - **v2.0.0**: Major update with advanced optimization features --- *Built with ❤️ for the project management community*