Upload README.md
Browse files
README.md
ADDED
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- emotion-classification
|
5 |
+
- bert
|
6 |
+
- lora
|
7 |
+
license: mit
|
8 |
+
---
|
9 |
+
|
10 |
+
# Emotion Classification Model
|
11 |
+
|
12 |
+
This model is a fine-tuned version of `bert-base-uncased` on the "dair-ai/emotion" dataset, using LoRA (Low-Rank Adaptation) for efficient fine-tuning.
|
13 |
+
|
14 |
+
## Model description
|
15 |
+
|
16 |
+
[Describe your model, its architecture, and the task it performs]
|
17 |
+
|
18 |
+
## Intended uses & limitations
|
19 |
+
|
20 |
+
[Describe what the model is intended for and any limitations]
|
21 |
+
|
22 |
+
## Training and evaluation data
|
23 |
+
|
24 |
+
The model was trained on the "dair-ai/emotion" dataset.
|
25 |
+
|
26 |
+
## Training procedure
|
27 |
+
|
28 |
+
[Describe your training procedure, hyperparameters, etc.]
|
29 |
+
|
30 |
+
## Eval results
|
31 |
+
|
32 |
+
[Include your evaluation results]
|
33 |
+
|
34 |
+
## How to use
|
35 |
+
|
36 |
+
Here's how you can use the model:
|
37 |
+
|
38 |
+
```python
|
39 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
40 |
+
|
41 |
+
model = AutoModelForSequenceClassification.from_pretrained("YOUR_HUGGINGFACE_USERNAME/emotion_classifier")
|
42 |
+
tokenizer = AutoTokenizer.from_pretrained("YOUR_HUGGINGFACE_USERNAME/emotion_classifier")
|
43 |
+
|
44 |
+
text = "I am feeling very happy today!"
|
45 |
+
inputs = tokenizer(text, return_tensors="pt")
|
46 |
+
outputs = model(**inputs)
|
47 |
+
predictions = outputs.logits.argmax(-1)
|
48 |
+
print(model.config.id2label[predictions.item()])
|