ahmetyaylalioglu commited on
Commit
3b26ea2
·
verified ·
1 Parent(s): 468eac3

Upload README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language: en
3
+ tags:
4
+ - emotion-classification
5
+ - bert
6
+ - lora
7
+ license: mit
8
+ ---
9
+
10
+ # Emotion Classification Model
11
+
12
+ This model is a fine-tuned version of `bert-base-uncased` on the "dair-ai/emotion" dataset, using LoRA (Low-Rank Adaptation) for efficient fine-tuning.
13
+
14
+ ## Model description
15
+
16
+ [Describe your model, its architecture, and the task it performs]
17
+
18
+ ## Intended uses & limitations
19
+
20
+ [Describe what the model is intended for and any limitations]
21
+
22
+ ## Training and evaluation data
23
+
24
+ The model was trained on the "dair-ai/emotion" dataset.
25
+
26
+ ## Training procedure
27
+
28
+ [Describe your training procedure, hyperparameters, etc.]
29
+
30
+ ## Eval results
31
+
32
+ [Include your evaluation results]
33
+
34
+ ## How to use
35
+
36
+ Here's how you can use the model:
37
+
38
+ ```python
39
+ from transformers import AutoModelForSequenceClassification, AutoTokenizer
40
+
41
+ model = AutoModelForSequenceClassification.from_pretrained("YOUR_HUGGINGFACE_USERNAME/emotion_classifier")
42
+ tokenizer = AutoTokenizer.from_pretrained("YOUR_HUGGINGFACE_USERNAME/emotion_classifier")
43
+
44
+ text = "I am feeling very happy today!"
45
+ inputs = tokenizer(text, return_tensors="pt")
46
+ outputs = model(**inputs)
47
+ predictions = outputs.logits.argmax(-1)
48
+ print(model.config.id2label[predictions.item()])