--- library_name: transformers license: apache-2.0 base_model: Qwen/Qwen2.5-Coder-1.5B-Instruct tags: - llama-factory - full - generated_from_trainer model-index: - name: ex19_qwen2.5-1.5b-1M-stack-16kcw results: [] --- # ex19_qwen2.5-1.5b-1M-stack-16kcw This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-1.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct) on the stack_16k, the anghabench_16k_1 and the anghabench_16k_2 datasets. It achieves the following results on the evaluation set: - Loss: 0.0003 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 1 - eval_batch_size: 1 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 8 - total_eval_batch_size: 2 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:------:|:---------------:| | 0.0037 | 0.1645 | 25000 | 0.0028 | | 0.003 | 0.3289 | 50000 | 0.0017 | | 0.002 | 0.4934 | 75000 | 0.0012 | | 0.0002 | 0.6579 | 100000 | 0.0011 | | 0.0011 | 0.8224 | 125000 | 0.0009 | | 0.001 | 0.9868 | 150000 | 0.0007 | | 0.0013 | 1.1513 | 175000 | 0.0005 | | 0.0004 | 1.3158 | 200000 | 0.0005 | | 0.0007 | 1.4802 | 225000 | 0.0004 | | 0.0007 | 1.6447 | 250000 | 0.0004 | | 0.0003 | 1.8092 | 275000 | 0.0003 | | 0.0002 | 1.9736 | 300000 | 0.0003 | ### Framework versions - Transformers 4.46.1 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3