File size: 1,328 Bytes
0ba8a44
 
7f40bf6
 
0ba8a44
 
 
7f40bf6
 
 
 
0ba8a44
 
7f40bf6
 
0ba8a44
7f40bf6
0ba8a44
7f40bf6
0ba8a44
7f40bf6
0ba8a44
7f40bf6
0ba8a44
7f40bf6
0ba8a44
7f40bf6
0ba8a44
7f40bf6
0ba8a44
7f40bf6
0ba8a44
7f40bf6
 
 
 
 
 
f07d83f
7f40bf6
 
 
f07d83f
 
7f40bf6
 
0ba8a44
7f40bf6
0ba8a44
 
 
7f40bf6
 
f07d83f
7f40bf6
f07d83f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: asm2asm-qwen2.5coder-0.5b-100k-2ep-tokenizer
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# asm2asm-qwen2.5coder-0.5b-100k-2ep-tokenizer

This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct) on an unknown dataset.

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2

### Training results



### Framework versions

- Transformers 4.46.0
- Pytorch 2.4.1+cu118
- Datasets 3.0.1
- Tokenizers 0.20.1