File size: 1,328 Bytes
0ba8a44 7f40bf6 0ba8a44 7f40bf6 0ba8a44 7f40bf6 0ba8a44 7f40bf6 0ba8a44 7f40bf6 0ba8a44 7f40bf6 0ba8a44 7f40bf6 0ba8a44 7f40bf6 0ba8a44 7f40bf6 0ba8a44 7f40bf6 0ba8a44 7f40bf6 0ba8a44 7f40bf6 f07d83f 7f40bf6 f07d83f 7f40bf6 0ba8a44 7f40bf6 0ba8a44 7f40bf6 f07d83f 7f40bf6 f07d83f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
---
library_name: transformers
license: apache-2.0
base_model: Qwen/Qwen2.5-Coder-0.5B-Instruct
tags:
- trl
- sft
- generated_from_trainer
model-index:
- name: asm2asm-qwen2.5coder-0.5b-100k-2ep-tokenizer
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# asm2asm-qwen2.5coder-0.5b-100k-2ep-tokenizer
This model is a fine-tuned version of [Qwen/Qwen2.5-Coder-0.5B-Instruct](https://huggingface.co/Qwen/Qwen2.5-Coder-0.5B-Instruct) on an unknown dataset.
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 8
- total_train_batch_size: 8
- optimizer: Use paged_adamw_32bit with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 2
### Training results
### Framework versions
- Transformers 4.46.0
- Pytorch 2.4.1+cu118
- Datasets 3.0.1
- Tokenizers 0.20.1
|