File size: 26,514 Bytes
866abdc d21dd1d 866abdc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 |
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Bonus Unit 2: Observability and Evaluation of Agents\n",
"\n",
"In this tutorial, we will learn how to **monitor the internal steps (traces) of our AI agent** and **evaluate its performance** using open-source observability tools.\n",
"\n",
"The ability to observe and evaluate an agent’s behavior is essential for:\n",
"- Debugging issues when tasks fail or produce suboptimal results\n",
"- Monitoring costs and performance in real-time\n",
"- Improving reliability and safety through continuous feedback\n",
"\n",
"This notebook is part of the [Hugging Face Agents Course](https://www.hf.co/learn/agents-course/unit1/introduction)."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exercise Prerequisites 🏗️\n",
"\n",
"Before running this notebook, please be sure you have:\n",
"\n",
"🔲 📚 **Studied** [Introduction to Agents](https://huggingface.co/learn/agents-course/unit1/introduction)\n",
"\n",
"🔲 📚 **Studied** [The smolagents framework](https://huggingface.co/learn/agents-course/unit2/smolagents/introduction)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 0: Install the Required Libraries\n",
"\n",
"We will need a few libraries that allow us to run, monitor, and evaluate our agents:"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install 'smolagents[telemetry]'\n",
"%pip install opentelemetry-sdk opentelemetry-exporter-otlp openinference-instrumentation-smolagents\n",
"%pip install langfuse datasets 'smolagents[gradio]' gradio"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 1: Instrument Your Agent\n",
"\n",
"In this notebook, we will use [Langfuse](https://langfuse.com/) as our observability tool, but you can use **any other OpenTelemetry-compatible service**. The code below shows how to set environment variables for Langfuse (or any OTel endpoint) and how to instrument your smolagent.\n",
"\n",
"**Note:** If you are using LlamaIndex or LangGraph, you can find documentation on instrumenting them [here](https://langfuse.com/docs/integrations/llama-index/workflows) and [here](https://langfuse.com/docs/integrations/langchain/example-python-langgraph). "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import os\n",
"import base64\n",
"\n",
"# Get your own keys from https://cloud.langfuse.com\n",
"os.environ[\"LANGFUSE_PUBLIC_KEY\"] = \"pk-lf-...\" \n",
"os.environ[\"LANGFUSE_SECRET_KEY\"] = \"sk-lf-...\" \n",
"os.environ[\"LANGFUSE_HOST\"] = \"https://cloud.langfuse.com\" # 🇪🇺 EU region example\n",
"# os.environ[\"LANGFUSE_HOST\"] = \"https://us.cloud.langfuse.com\" # 🇺🇸 US region example\n",
"\n",
"LANGFUSE_AUTH = base64.b64encode(\n",
" f\"{os.environ.get('LANGFUSE_PUBLIC_KEY')}:{os.environ.get('LANGFUSE_SECRET_KEY')}\".encode()\n",
").decode()\n",
"\n",
"os.environ[\"OTEL_EXPORTER_OTLP_ENDPOINT\"] = os.environ.get(\"LANGFUSE_HOST\") + \"/api/public/otel\"\n",
"os.environ[\"OTEL_EXPORTER_OTLP_HEADERS\"] = f\"Authorization=Basic {LANGFUSE_AUTH}\""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Set your Hugging Face and other tokens/secrets as environment variable\n",
"os.environ[\"HF_TOKEN\"] = \"hf_...\" "
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from opentelemetry.sdk.trace import TracerProvider\n",
"from openinference.instrumentation.smolagents import SmolagentsInstrumentor\n",
"from opentelemetry.exporter.otlp.proto.http.trace_exporter import OTLPSpanExporter\n",
"from opentelemetry.sdk.trace.export import SimpleSpanProcessor\n",
" \n",
"# Create a TracerProvider for OpenTelemetry\n",
"trace_provider = TracerProvider()\n",
"\n",
"# Add a SimpleSpanProcessor with the OTLPSpanExporter to send traces\n",
"trace_provider.add_span_processor(SimpleSpanProcessor(OTLPSpanExporter()))\n",
"\n",
"# Set the global default tracer provider\n",
"from opentelemetry import trace\n",
"trace.set_tracer_provider(trace_provider)\n",
"tracer = trace.get_tracer(__name__)\n",
"\n",
"# Instrument smolagents with the configured provider\n",
"SmolagentsInstrumentor().instrument(tracer_provider=trace_provider)\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 2: Test Your Instrumentation\n",
"\n",
"Here is a simple CodeAgent from smolagents that calculates `1+1`. We run it to confirm that the instrumentation is working correctly. If everything is set up correctly, you will see logs/spans in your observability dashboard."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from smolagents import HfApiModel, CodeAgent\n",
"\n",
"# Create a simple agent to test instrumentation\n",
"agent = CodeAgent(\n",
" tools=[],\n",
" model=HfApiModel()\n",
")\n",
"\n",
"agent.run(\"1+1=\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Check your [Langfuse Traces Dashboard](https://cloud.langfuse.com/traces) (or your chosen observability tool) to confirm that the spans and logs have been recorded.\n",
"\n",
"Example screenshot from Langfuse:\n",
"\n",
"\n",
"\n",
"_[Link to the trace](https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/1b94d6888258e0998329cdb72a371155?timestamp=2025-03-10T11%3A59%3A41.743Z)_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Step 3: Observe and Evaluate a More Complex Agent\n",
"\n",
"Now that you have confirmed your instrumentation works, let's try a more complex query so we can see how advanced metrics (token usage, latency, costs, etc.) are tracked."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from smolagents import (CodeAgent, DuckDuckGoSearchTool, HfApiModel)\n",
"\n",
"search_tool = DuckDuckGoSearchTool()\n",
"agent = CodeAgent(tools=[search_tool], model=HfApiModel())\n",
"\n",
"agent.run(\"How many Rubik's Cubes could you fit inside the Notre Dame Cathedral?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Trace Structure\n",
"\n",
"Most observability tools record a **trace** that contains **spans**, which represent each step of your agent’s logic. Here, the trace contains the overall agent run and sub-spans for:\n",
"- The tool calls (DuckDuckGoSearchTool)\n",
"- The LLM calls (HfApiModel)\n",
"\n",
"You can inspect these to see precisely where time is spent, how many tokens are used, and so on:\n",
"\n",
"\n",
"\n",
"_[Link to the trace](https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/1ac33b89ffd5e75d4265b62900c348ed?timestamp=2025-03-07T13%3A45%3A09.149Z&display=preview)_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Online Evaluation\n",
"\n",
"In the previous section, we learned about the difference between online and offline evaluation. Now, we will see how to monitor your agent in production and evaluate it live.\n",
"\n",
"### Common Metrics to Track in Production\n",
"\n",
"1. **Costs** — The smolagents instrumentation captures token usage, which you can transform into approximate costs by assigning a price per token.\n",
"2. **Latency** — Observe the time it takes to complete each step, or the entire run.\n",
"3. **User Feedback** — Users can provide direct feedback (thumbs up/down) to help refine or correct the agent.\n",
"4. **LLM-as-a-Judge** — Use a separate LLM to evaluate your agent’s output in near real-time (e.g., checking for toxicity or correctness).\n",
"\n",
"Below, we show examples of these metrics."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 1. Costs\n",
"\n",
"Below is a screenshot showing usage for `Qwen2.5-Coder-32B-Instruct` calls. This is useful to see costly steps and optimize your agent. \n",
"\n",
"\n",
"\n",
"_[Link to the trace](https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/1ac33b89ffd5e75d4265b62900c348ed?timestamp=2025-03-07T13%3A45%3A09.149Z&display=preview)_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 2. Latency\n",
"\n",
"We can also see how long it took to complete each step. In the example below, the entire conversation took 32 seconds, which you can break down by step. This helps you identify bottlenecks and optimize your agent.\n",
"\n",
"\n",
"\n",
"_[Link to the trace](https://cloud.langfuse.com/project/cloramnkj0002jz088vzn1ja4/traces/1ac33b89ffd5e75d4265b62900c348ed?timestamp=2025-03-07T13%3A45%3A09.149Z&display=preview)_"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 3. Additional Attributes\n",
"\n",
"You may also pass additional attributes—such as user IDs, session IDs, or tags—by setting them on the spans. For example, smolagents instrumentation uses OpenTelemetry to attach attributes like `langfuse.user.id` or custom tags."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from smolagents import (CodeAgent, DuckDuckGoSearchTool, HfApiModel)\n",
"from opentelemetry import trace\n",
"\n",
"search_tool = DuckDuckGoSearchTool()\n",
"agent = CodeAgent(\n",
" tools=[search_tool],\n",
" model=HfApiModel()\n",
")\n",
"\n",
"with tracer.start_as_current_span(\"Smolagent-Trace\") as span:\n",
" span.set_attribute(\"langfuse.user.id\", \"smolagent-user-123\")\n",
" span.set_attribute(\"langfuse.session.id\", \"smolagent-session-123456789\")\n",
" span.set_attribute(\"langfuse.tags\", [\"city-question\", \"testing-agents\"])\n",
"\n",
" agent.run(\"What is the capital of Germany?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 4. User Feedback\n",
"\n",
"If your agent is embedded into a user interface, you can record direct user feedback (like a thumbs-up/down in a chat UI). Below is an example using [Gradio](https://gradio.app/) to embed a chat with a simple feedback mechanism.\n",
"\n",
"In the code snippet below, when a user sends a chat message, we capture the OpenTelemetry trace ID. If the user likes/dislikes the last answer, we attach a score to the trace."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import gradio as gr\n",
"from opentelemetry.trace import format_trace_id\n",
"from smolagents import (CodeAgent, HfApiModel)\n",
"from langfuse import Langfuse\n",
"\n",
"langfuse = Langfuse()\n",
"model = HfApiModel()\n",
"agent = CodeAgent(tools=[], model=model, add_base_tools=True)\n",
"\n",
"formatted_trace_id = None # We'll store the current trace_id globally for demonstration\n",
"\n",
"def respond(prompt, history):\n",
" with trace.get_tracer(__name__).start_as_current_span(\"Smolagent-Trace\") as span:\n",
" output = agent.run(prompt)\n",
"\n",
" current_span = trace.get_current_span()\n",
" span_context = current_span.get_span_context()\n",
" trace_id = span_context.trace_id\n",
" global formatted_trace_id\n",
" formatted_trace_id = str(format_trace_id(trace_id))\n",
" langfuse.trace(id=formatted_trace_id, input=prompt, output=output)\n",
"\n",
" history.append({\"role\": \"assistant\", \"content\": str(output)})\n",
" return history\n",
"\n",
"def handle_like(data: gr.LikeData):\n",
" # For demonstration, we map user feedback to a 1 (like) or 0 (dislike)\n",
" if data.liked:\n",
" langfuse.score(\n",
" value=1,\n",
" name=\"user-feedback\",\n",
" trace_id=formatted_trace_id\n",
" )\n",
" else:\n",
" langfuse.score(\n",
" value=0,\n",
" name=\"user-feedback\",\n",
" trace_id=formatted_trace_id\n",
" )\n",
"\n",
"with gr.Blocks() as demo:\n",
" chatbot = gr.Chatbot(label=\"Chat\", type=\"messages\")\n",
" prompt_box = gr.Textbox(placeholder=\"Type your message...\", label=\"Your message\")\n",
"\n",
" # When the user presses 'Enter' on the prompt, we run 'respond'\n",
" prompt_box.submit(\n",
" fn=respond,\n",
" inputs=[prompt_box, chatbot],\n",
" outputs=chatbot\n",
" )\n",
"\n",
" # When the user clicks a 'like' button on a message, we run 'handle_like'\n",
" chatbot.like(handle_like, None, None)\n",
"\n",
"demo.launch()\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"User feedback is then captured in your observability tool:\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 5. LLM-as-a-Judge\n",
"\n",
"LLM-as-a-Judge is another way to automatically evaluate your agent's output. You can set up a separate LLM call to gauge the output’s correctness, toxicity, style, or any other criteria you care about.\n",
"\n",
"**Workflow**:\n",
"1. You define an **Evaluation Template**, e.g., \"Check if the text is toxic.\"\n",
"2. Each time your agent generates output, you pass that output to your \"judge\" LLM with the template.\n",
"3. The judge LLM responds with a rating or label that you log to your observability tool.\n",
"\n",
"Example from Langfuse:\n",
"\n",
"\n",
""
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# Example: Checking if the agent’s output is toxic or not.\n",
"from smolagents import (CodeAgent, DuckDuckGoSearchTool, HfApiModel)\n",
"\n",
"search_tool = DuckDuckGoSearchTool()\n",
"agent = CodeAgent(tools=[search_tool], model=HfApiModel())\n",
"\n",
"agent.run(\"Can eating carrots improve your vision?\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can see that the answer of this example is judged as \"not toxic\".\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### 6. Observability Metrics Overview\n",
"\n",
"All of these metrics can be visualized together in dashboards. This enables you to quickly see how your agent performs across many sessions and helps you to track quality metrics over time.\n",
"\n",
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Offline Evaluation\n",
"\n",
"Online evaluation is essential for live feedback, but you also need **offline evaluation**—systematic checks before or during development. This helps maintain quality and reliability before rolling changes into production."
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Dataset Evaluation\n",
"\n",
"In offline evaluation, you typically:\n",
"1. Have a benchmark dataset (with prompt and expected output pairs)\n",
"2. Run your agent on that dataset\n",
"3. Compare outputs to the expected results or use an additional scoring mechanism\n",
"\n",
"Below, we demonstrate this approach with the [GSM8K dataset](https://huggingface.co/datasets/gsm8k), which contains math questions and solutions."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"from datasets import load_dataset\n",
"\n",
"# Fetch GSM8K from Hugging Face\n",
"dataset = load_dataset(\"openai/gsm8k\", 'main', split='train')\n",
"df = pd.DataFrame(dataset)\n",
"print(\"First few rows of GSM8K dataset:\")\n",
"print(df.head())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Next, we create a dataset entity in Langfuse to track the runs. Then, we add each item from the dataset to the system. (If you’re not using Langfuse, you might simply store these in your own database or local file for analysis.)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langfuse import Langfuse\n",
"langfuse = Langfuse()\n",
"\n",
"langfuse_dataset_name = \"gsm8k_dataset_huggingface\"\n",
"\n",
"# Create a dataset in Langfuse\n",
"langfuse.create_dataset(\n",
" name=langfuse_dataset_name,\n",
" description=\"GSM8K benchmark dataset uploaded from Huggingface\",\n",
" metadata={\n",
" \"date\": \"2025-03-10\", \n",
" \"type\": \"benchmark\"\n",
" }\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"for idx, row in df.iterrows():\n",
" langfuse.create_dataset_item(\n",
" dataset_name=langfuse_dataset_name,\n",
" input={\"text\": row[\"question\"]},\n",
" expected_output={\"text\": row[\"answer\"]},\n",
" metadata={\"source_index\": idx}\n",
" )\n",
" if idx >= 9: # Upload only the first 10 items for demonstration\n",
" break"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
""
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Running the Agent on the Dataset\n",
"\n",
"We define a helper function `run_smolagent()` that:\n",
"1. Starts an OpenTelemetry span\n",
"2. Runs our agent on the prompt\n",
"3. Records the trace ID in Langfuse\n",
"\n",
"Then, we loop over each dataset item, run the agent, and link the trace to the dataset item. We can also attach a quick evaluation score if desired."
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from opentelemetry.trace import format_trace_id\n",
"from smolagents import (CodeAgent, HfApiModel, LiteLLMModel)\n",
"\n",
"# Example: using HfApiModel or LiteLLMModel to access openai, anthropic, gemini, etc. models:\n",
"model = HfApiModel()\n",
"\n",
"agent = CodeAgent(\n",
" tools=[],\n",
" model=model,\n",
" add_base_tools=True\n",
")\n",
"\n",
"def run_smolagent(question):\n",
" with tracer.start_as_current_span(\"Smolagent-Trace\") as span:\n",
" span.set_attribute(\"langfuse.tag\", \"dataset-run\")\n",
" output = agent.run(question)\n",
"\n",
" current_span = trace.get_current_span()\n",
" span_context = current_span.get_span_context()\n",
" trace_id = span_context.trace_id\n",
" formatted_trace_id = format_trace_id(trace_id)\n",
"\n",
" langfuse_trace = langfuse.trace(\n",
" id=formatted_trace_id, \n",
" input=question, \n",
" output=output\n",
" )\n",
" return langfuse_trace, output"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"dataset = langfuse.get_dataset(langfuse_dataset_name)\n",
"\n",
"# Run our agent against each dataset item (limited to first 10 above)\n",
"for item in dataset.items:\n",
" langfuse_trace, output = run_smolagent(item.input[\"text\"])\n",
"\n",
" # Link the trace to the dataset item for analysis\n",
" item.link(\n",
" langfuse_trace,\n",
" run_name=\"smolagent-notebook-run-01\",\n",
" run_metadata={ \"model\": model.model_id }\n",
" )\n",
"\n",
" # Optionally, store a quick evaluation score for demonstration\n",
" langfuse_trace.score(\n",
" name=\"<example_eval>\",\n",
" value=1,\n",
" comment=\"This is a comment\"\n",
" )\n",
"\n",
"# Flush data to ensure all telemetry is sent\n",
"langfuse.flush()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"You can repeat this process with different:\n",
"- Models (OpenAI GPT, local LLM, etc.)\n",
"- Tools (search vs. no search)\n",
"- Prompts (different system messages)\n",
"\n",
"Then compare them side-by-side in your observability tool:\n",
"\n",
"\n",
"\n"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Final Thoughts\n",
"\n",
"In this notebook, we covered how to:\n",
"1. **Set up Observability** using smolagents + OpenTelemetry exporters\n",
"2. **Check Instrumentation** by running a simple agent\n",
"3. **Capture Detailed Metrics** (cost, latency, etc.) through an observability tools\n",
"4. **Collect User Feedback** via a Gradio interface\n",
"5. **Use LLM-as-a-Judge** to automatically evaluate outputs\n",
"6. **Perform Offline Evaluation** with a benchmark dataset\n",
"\n",
"🤗 Happy coding!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.13.2"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|