File size: 15,603 Bytes
0b26412
 
 
 
 
 
 
 
 
 
 
 
601af2c
0b26412
 
 
 
 
 
 
601af2c
0b26412
601af2c
 
 
 
 
 
 
 
0b26412
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
105acaa
e040f43
0b26412
 
 
 
e040f43
0b26412
 
 
1a66ffb
 
601af2c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0b26412
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
---
license: mit
base_model: prajjwal1/bert-tiny
tags:
- generated_from_trainer
metrics:
- precision
- recall
- f1
- accuracy
model-index:
- name: sembr2023-bert-tiny
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# sembr2023-bert-tiny

This model is a fine-tuned version of [prajjwal1/bert-tiny](https://huggingface.co/prajjwal1/bert-tiny) on an unknown dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2101
- Precision: 0.7983
- Recall: 0.6561
- F1: 0.7202
- Iou: 0.5628
- Accuracy: 0.9531
- Balanced Accuracy: 0.8196
- Overall Accuracy: 0.9387

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 128
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- training_steps: 1000

### Training results

| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1     | Iou    | Accuracy | Balanced Accuracy | Overall Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:------:|:--------:|:-----------------:|:----------------:|
| 1.2554        | 0.06  | 10   | 1.1550          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.8047        | 0.12  | 20   | 0.7616          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.6392        | 0.18  | 30   | 0.6116          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.5328        | 0.24  | 40   | 0.5384          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.4859        | 0.3   | 50   | 0.4982          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.469         | 0.36  | 60   | 0.4726          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.4711        | 0.42  | 70   | 0.4513          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.4341        | 0.48  | 80   | 0.4349          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.4234        | 0.55  | 90   | 0.4181          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.3661        | 0.61  | 100  | 0.3970          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.3901        | 0.67  | 110  | 0.3685          | 0         | 0.0    | 0.0    | 0.0    | 0.9080   | 0.5               | 0.9080           |
| 0.3493        | 0.73  | 120  | 0.3447          | 0.6074    | 0.0126 | 0.0247 | 0.0125 | 0.9084   | 0.5059            | 0.9081           |
| 0.3199        | 0.79  | 130  | 0.3309          | 0.6329    | 0.0676 | 0.1222 | 0.0651 | 0.9106   | 0.5318            | 0.9095           |
| 0.3444        | 0.85  | 140  | 0.3219          | 0.6748    | 0.1406 | 0.2328 | 0.1317 | 0.9147   | 0.5669            | 0.9130           |
| 0.3131        | 0.91  | 150  | 0.3158          | 0.6768    | 0.2211 | 0.3334 | 0.2000 | 0.9187   | 0.6052            | 0.9154           |
| 0.2921        | 0.97  | 160  | 0.3100          | 0.7245    | 0.1708 | 0.2765 | 0.1604 | 0.9178   | 0.5821            | 0.9156           |
| 0.3121        | 1.03  | 170  | 0.3057          | 0.6425    | 0.3246 | 0.4313 | 0.2749 | 0.9213   | 0.6531            | 0.9157           |
| 0.3267        | 1.09  | 180  | 0.3035          | 0.6597    | 0.3155 | 0.4269 | 0.2714 | 0.9221   | 0.6495            | 0.9168           |
| 0.28          | 1.15  | 190  | 0.2986          | 0.6836    | 0.3429 | 0.4567 | 0.2960 | 0.9250   | 0.6634            | 0.9171           |
| 0.2945        | 1.21  | 200  | 0.2929          | 0.7005    | 0.3078 | 0.4276 | 0.2720 | 0.9242   | 0.6472            | 0.9177           |
| 0.2744        | 1.27  | 210  | 0.2874          | 0.7108    | 0.3406 | 0.4606 | 0.2992 | 0.9266   | 0.6633            | 0.9183           |
| 0.2563        | 1.33  | 220  | 0.2866          | 0.6712    | 0.4432 | 0.5339 | 0.3641 | 0.9288   | 0.7106            | 0.9182           |
| 0.2565        | 1.39  | 230  | 0.2793          | 0.7057    | 0.4187 | 0.5256 | 0.3565 | 0.9305   | 0.7005            | 0.9203           |
| 0.2383        | 1.45  | 240  | 0.2760          | 0.6918    | 0.4493 | 0.5448 | 0.3744 | 0.9309   | 0.7145            | 0.9197           |
| 0.2477        | 1.52  | 250  | 0.2698          | 0.7317    | 0.4190 | 0.5328 | 0.3632 | 0.9324   | 0.7017            | 0.9218           |
| 0.2466        | 1.58  | 260  | 0.2674          | 0.7119    | 0.4605 | 0.5593 | 0.3882 | 0.9332   | 0.7208            | 0.9212           |
| 0.2623        | 1.64  | 270  | 0.2641          | 0.7071    | 0.4675 | 0.5629 | 0.3917 | 0.9332   | 0.7240            | 0.9220           |
| 0.2308        | 1.7   | 280  | 0.2622          | 0.7169    | 0.4797 | 0.5748 | 0.4033 | 0.9347   | 0.7303            | 0.9225           |
| 0.2179        | 1.76  | 290  | 0.2577          | 0.7287    | 0.4678 | 0.5698 | 0.3984 | 0.9350   | 0.7251            | 0.9236           |
| 0.2347        | 1.82  | 300  | 0.2557          | 0.7425    | 0.4651 | 0.5719 | 0.4005 | 0.9360   | 0.7244            | 0.9246           |
| 0.2175        | 1.88  | 310  | 0.2549          | 0.7314    | 0.4873 | 0.5849 | 0.4133 | 0.9364   | 0.7346            | 0.9244           |
| 0.2365        | 1.94  | 320  | 0.2524          | 0.7237    | 0.5057 | 0.5954 | 0.4239 | 0.9368   | 0.7431            | 0.9244           |
| 0.2068        | 2.0   | 330  | 0.2513          | 0.7569    | 0.4744 | 0.5832 | 0.4117 | 0.9376   | 0.7295            | 0.9260           |
| 0.2004        | 2.06  | 340  | 0.2506          | 0.6962    | 0.5462 | 0.6122 | 0.4411 | 0.9363   | 0.7611            | 0.9234           |
| 0.231         | 2.12  | 350  | 0.2490          | 0.7145    | 0.5251 | 0.6053 | 0.4340 | 0.9370   | 0.7519            | 0.9241           |
| 0.2117        | 2.18  | 360  | 0.2457          | 0.7300    | 0.5132 | 0.6027 | 0.4314 | 0.9378   | 0.7470            | 0.9257           |
| 0.1768        | 2.24  | 370  | 0.2450          | 0.7281    | 0.5273 | 0.6116 | 0.4405 | 0.9384   | 0.7537            | 0.9256           |
| 0.2013        | 2.3   | 380  | 0.2433          | 0.7198    | 0.5513 | 0.6244 | 0.4539 | 0.9390   | 0.7648            | 0.9258           |
| 0.2128        | 2.36  | 390  | 0.2405          | 0.7568    | 0.5214 | 0.6174 | 0.4466 | 0.9406   | 0.7522            | 0.9282           |
| 0.2186        | 2.42  | 400  | 0.2393          | 0.7560    | 0.5215 | 0.6173 | 0.4464 | 0.9405   | 0.7522            | 0.9279           |
| 0.2105        | 2.48  | 410  | 0.2408          | 0.6966    | 0.5834 | 0.6350 | 0.4652 | 0.9383   | 0.7788            | 0.9246           |
| 0.2216        | 2.55  | 420  | 0.2382          | 0.7415    | 0.5493 | 0.6311 | 0.4610 | 0.9409   | 0.7650            | 0.9277           |
| 0.1816        | 2.61  | 430  | 0.2377          | 0.7258    | 0.5768 | 0.6428 | 0.4736 | 0.9410   | 0.7774            | 0.9274           |
| 0.2136        | 2.67  | 440  | 0.2352          | 0.7506    | 0.5456 | 0.6319 | 0.4619 | 0.9415   | 0.7636            | 0.9284           |
| 0.2043        | 2.73  | 450  | 0.2341          | 0.7425    | 0.5615 | 0.6394 | 0.4700 | 0.9418   | 0.7709            | 0.9286           |
| 0.2014        | 2.79  | 460  | 0.2333          | 0.7565    | 0.5572 | 0.6417 | 0.4725 | 0.9428   | 0.7695            | 0.9297           |
| 0.1862        | 2.85  | 470  | 0.2306          | 0.7744    | 0.5520 | 0.6446 | 0.4755 | 0.9440   | 0.7678            | 0.9313           |
| 0.1714        | 2.91  | 480  | 0.2312          | 0.7354    | 0.6083 | 0.6658 | 0.4991 | 0.9438   | 0.7931            | 0.9302           |
| 0.1693        | 2.97  | 490  | 0.2280          | 0.7637    | 0.5768 | 0.6572 | 0.4895 | 0.9447   | 0.7794            | 0.9314           |
| 0.2043        | 3.03  | 500  | 0.2288          | 0.7577    | 0.5848 | 0.6601 | 0.4927 | 0.9446   | 0.7830            | 0.9314           |
| 0.2138        | 3.09  | 510  | 0.2256          | 0.7797    | 0.5650 | 0.6552 | 0.4872 | 0.9453   | 0.7744            | 0.9327           |
| 0.1914        | 3.15  | 520  | 0.2250          | 0.7732    | 0.5873 | 0.6675 | 0.5010 | 0.9462   | 0.7849            | 0.9330           |
| 0.1647        | 3.21  | 530  | 0.2240          | 0.7586    | 0.6173 | 0.6807 | 0.5160 | 0.9467   | 0.7987            | 0.9329           |
| 0.1749        | 3.27  | 540  | 0.2237          | 0.7679    | 0.6108 | 0.6804 | 0.5156 | 0.9472   | 0.7961            | 0.9331           |
| 0.1883        | 3.33  | 550  | 0.2226          | 0.7839    | 0.5992 | 0.6792 | 0.5143 | 0.9479   | 0.7913            | 0.9344           |
| 0.1657        | 3.39  | 560  | 0.2196          | 0.7856    | 0.6059 | 0.6841 | 0.5199 | 0.9485   | 0.7946            | 0.9353           |
| 0.1721        | 3.45  | 570  | 0.2217          | 0.7556    | 0.6408 | 0.6935 | 0.5308 | 0.9479   | 0.8099            | 0.9335           |
| 0.1843        | 3.52  | 580  | 0.2188          | 0.7935    | 0.6010 | 0.6840 | 0.5197 | 0.9489   | 0.7926            | 0.9354           |
| 0.1709        | 3.58  | 590  | 0.2175          | 0.7993    | 0.6078 | 0.6905 | 0.5273 | 0.9499   | 0.7962            | 0.9364           |
| 0.1526        | 3.64  | 600  | 0.2168          | 0.7782    | 0.6380 | 0.7012 | 0.5398 | 0.9500   | 0.8098            | 0.9358           |
| 0.1614        | 3.7   | 610  | 0.2148          | 0.8129    | 0.6083 | 0.6959 | 0.5336 | 0.9511   | 0.7971            | 0.9380           |
| 0.1585        | 3.76  | 620  | 0.2149          | 0.8046    | 0.6210 | 0.7010 | 0.5396 | 0.9513   | 0.8029            | 0.9377           |
| 0.1798        | 3.82  | 630  | 0.2163          | 0.7788    | 0.6476 | 0.7072 | 0.5470 | 0.9507   | 0.8145            | 0.9364           |
| 0.1637        | 3.88  | 640  | 0.2147          | 0.8000    | 0.6276 | 0.7034 | 0.5425 | 0.9513   | 0.8059            | 0.9375           |
| 0.1542        | 3.94  | 650  | 0.2138          | 0.8004    | 0.6335 | 0.7072 | 0.5471 | 0.9518   | 0.8088            | 0.9379           |
| 0.1575        | 4.0   | 660  | 0.2146          | 0.7867    | 0.6464 | 0.7097 | 0.5500 | 0.9514   | 0.8143            | 0.9371           |
| 0.1632        | 4.06  | 670  | 0.2124          | 0.7998    | 0.6368 | 0.7091 | 0.5493 | 0.9519   | 0.8103            | 0.9380           |
| 0.1687        | 4.12  | 680  | 0.2112          | 0.8129    | 0.6294 | 0.7095 | 0.5498 | 0.9526   | 0.8074            | 0.9390           |
| 0.1565        | 4.18  | 690  | 0.2129          | 0.7959    | 0.6429 | 0.7113 | 0.5519 | 0.9520   | 0.8131            | 0.9380           |
| 0.1869        | 4.24  | 700  | 0.2128          | 0.7896    | 0.6526 | 0.7146 | 0.5559 | 0.9521   | 0.8175            | 0.9378           |
| 0.1689        | 4.3   | 710  | 0.2119          | 0.8052    | 0.6361 | 0.7107 | 0.5512 | 0.9524   | 0.8102            | 0.9385           |
| 0.1581        | 4.36  | 720  | 0.2126          | 0.7817    | 0.6618 | 0.7167 | 0.5585 | 0.9519   | 0.8215            | 0.9373           |
| 0.1683        | 4.42  | 730  | 0.2121          | 0.8019    | 0.6442 | 0.7145 | 0.5558 | 0.9526   | 0.8140            | 0.9384           |
| 0.1735        | 4.48  | 740  | 0.2111          | 0.8009    | 0.6452 | 0.7147 | 0.5560 | 0.9526   | 0.8145            | 0.9387           |
| 0.1537        | 4.55  | 750  | 0.2104          | 0.7991    | 0.6461 | 0.7145 | 0.5558 | 0.9525   | 0.8148            | 0.9386           |
| 0.174         | 4.61  | 760  | 0.2112          | 0.8031    | 0.6454 | 0.7156 | 0.5572 | 0.9528   | 0.8147            | 0.9387           |
| 0.1662        | 4.67  | 770  | 0.2118          | 0.7897    | 0.6586 | 0.7182 | 0.5603 | 0.9525   | 0.8204            | 0.9378           |
| 0.1486        | 4.73  | 780  | 0.2113          | 0.8009    | 0.6492 | 0.7171 | 0.5590 | 0.9529   | 0.8164            | 0.9386           |
| 0.1672        | 4.79  | 790  | 0.2110          | 0.8055    | 0.6461 | 0.7170 | 0.5589 | 0.9531   | 0.8152            | 0.9389           |
| 0.1553        | 4.85  | 800  | 0.2108          | 0.7969    | 0.6527 | 0.7176 | 0.5596 | 0.9528   | 0.8179            | 0.9383           |
| 0.1504        | 4.91  | 810  | 0.2106          | 0.8047    | 0.6461 | 0.7167 | 0.5585 | 0.9530   | 0.8151            | 0.9389           |
| 0.176         | 4.97  | 820  | 0.2103          | 0.8059    | 0.6459 | 0.7171 | 0.5589 | 0.9531   | 0.8151            | 0.9389           |
| 0.1597        | 5.03  | 830  | 0.2102          | 0.7979    | 0.6535 | 0.7185 | 0.5607 | 0.9529   | 0.8184            | 0.9386           |
| 0.1437        | 5.09  | 840  | 0.2105          | 0.7977    | 0.6539 | 0.7187 | 0.5609 | 0.9529   | 0.8185            | 0.9385           |
| 0.1751        | 5.15  | 850  | 0.2104          | 0.8004    | 0.6508 | 0.7179 | 0.5600 | 0.9530   | 0.8172            | 0.9386           |
| 0.1737        | 5.21  | 860  | 0.2105          | 0.7951    | 0.6573 | 0.7197 | 0.5621 | 0.9529   | 0.8201            | 0.9385           |
| 0.1683        | 5.27  | 870  | 0.2104          | 0.7953    | 0.6573 | 0.7198 | 0.5622 | 0.9529   | 0.8201            | 0.9385           |
| 0.1477        | 5.33  | 880  | 0.2102          | 0.7974    | 0.6536 | 0.7184 | 0.5605 | 0.9529   | 0.8184            | 0.9386           |
| 0.1702        | 5.39  | 890  | 0.2102          | 0.7978    | 0.6532 | 0.7183 | 0.5604 | 0.9529   | 0.8182            | 0.9386           |
| 0.1478        | 5.45  | 900  | 0.2101          | 0.7985    | 0.6536 | 0.7188 | 0.5611 | 0.9530   | 0.8185            | 0.9386           |
| 0.1656        | 5.52  | 910  | 0.2099          | 0.8       | 0.6522 | 0.7186 | 0.5608 | 0.9530   | 0.8179            | 0.9387           |
| 0.1757        | 5.58  | 920  | 0.2099          | 0.7996    | 0.6525 | 0.7186 | 0.5608 | 0.9530   | 0.8180            | 0.9387           |
| 0.1723        | 5.64  | 930  | 0.2100          | 0.7990    | 0.6536 | 0.7190 | 0.5613 | 0.9530   | 0.8185            | 0.9387           |
| 0.1472        | 5.7   | 940  | 0.2101          | 0.7976    | 0.6561 | 0.7199 | 0.5624 | 0.9531   | 0.8196            | 0.9386           |
| 0.1628        | 5.76  | 950  | 0.2102          | 0.7974    | 0.6564 | 0.7201 | 0.5626 | 0.9531   | 0.8198            | 0.9386           |
| 0.1563        | 5.82  | 960  | 0.2102          | 0.7973    | 0.6564 | 0.7200 | 0.5626 | 0.9531   | 0.8198            | 0.9386           |
| 0.1893        | 5.88  | 970  | 0.2102          | 0.7979    | 0.6563 | 0.7202 | 0.5628 | 0.9531   | 0.8197            | 0.9387           |
| 0.1554        | 5.94  | 980  | 0.2101          | 0.7982    | 0.6562 | 0.7203 | 0.5628 | 0.9531   | 0.8197            | 0.9387           |
| 0.1636        | 6.0   | 990  | 0.2101          | 0.7983    | 0.6561 | 0.7202 | 0.5628 | 0.9531   | 0.8196            | 0.9387           |
| 0.1588        | 6.06  | 1000 | 0.2101          | 0.7983    | 0.6561 | 0.7202 | 0.5628 | 0.9531   | 0.8196            | 0.9387           |


### Framework versions

- Transformers 4.34.1
- Pytorch 2.0.1
- Datasets 2.14.6
- Tokenizers 0.14.1