Update README.md
Browse files
README.md
CHANGED
@@ -1,34 +1,93 @@
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
tags:
|
|
|
4 |
- Computational Biology
|
|
|
5 |
- Bioinformatics
|
6 |
-
-
|
7 |
license: apache-2.0
|
|
|
8 |
---
|
9 |
|
|
|
10 |
|
11 |
-
|
12 |
-
CodonTransformer is a state-of-the-art model designed to predict optimized DNA sequences for given protein sequences and organisms. It achieves state-of-the-art performance compared to existing models in the field.
|
13 |
-
More information will be provided soon.
|
14 |
|
15 |
-
https://github.com/Adibvafa/CodonTransformer
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
|
18 |
-
## How to Get Started with the Model
|
19 |
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
|
22 |
```python
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
```
|
29 |
|
30 |
-
You can use CodonTransformer at Google Colab:
|
31 |
-
https://adibvafa.github.io/CodonTransformer/GoogleColab
|
32 |
|
33 |
-
|
34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
---
|
2 |
library_name: transformers
|
3 |
tags:
|
4 |
+
- CodonTransformer
|
5 |
- Computational Biology
|
6 |
+
- Machine Learning
|
7 |
- Bioinformatics
|
8 |
+
- Genetics
|
9 |
license: apache-2.0
|
10 |
+
pipeline_tag: token-classification
|
11 |
---
|
12 |
|
13 |
+

|
14 |
|
15 |
+
**CodonTransformer** is the ultimate tool for codon optimization, transforming protein sequences into optimized DNA sequences specific for your target organisms. Whether you are a researcher or a practitioner in genetic engineering, CodonTransformer provides a comprehensive suite of features to facilitate your work. By leveraging the Transformer architecture and a user-friendly Jupyter notebook, it reduces the complexity of codon optimization, saving you time and effort.
|
|
|
|
|
16 |
|
|
|
17 |
|
18 |
+
## Use Case
|
19 |
+
**For an interactive demo, check out our [Google Colab Notebook.](https://adibvafa.github.io/CodonTransformer/GoogleColab)**
|
20 |
+
<br></br>
|
21 |
+
After installing CodonTransformer, you can use:
|
22 |
+
```python
|
23 |
+
import torch
|
24 |
+
from transformers import AutoTokenizer, BigBirdForMaskedLM
|
25 |
+
from CodonTransformer.CodonPrediction import predict_dna_sequence
|
26 |
+
from CodonTransformer.CodonUtils import ORGANISM2ID
|
27 |
+
from CodonTransformer.CodonJupyter import format_model_output
|
28 |
+
DEVICE = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
29 |
|
|
|
30 |
|
31 |
+
# Load model and tokenizer
|
32 |
+
tokenizer = AutoTokenizer.from_pretrained("adibvafa/CodonTransformer")
|
33 |
+
model = BigBirdForMaskedLM.from_pretrained("adibvafa/CodonTransformer").to(DEVICE)
|
34 |
+
|
35 |
+
|
36 |
+
# Set your input data
|
37 |
+
protein = "MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGG"
|
38 |
+
organism = "Escherichia coli general"
|
39 |
+
|
40 |
+
|
41 |
+
# Predict with CodonTransformer
|
42 |
+
output = predict_dna_sequence(
|
43 |
+
protein=protein,
|
44 |
+
organism=organism,
|
45 |
+
device=DEVICE,
|
46 |
+
tokenizer_object=tokenizer,
|
47 |
+
model_object=model,
|
48 |
+
attention_type="original_full",
|
49 |
+
)
|
50 |
+
print(format_model_output(output))
|
51 |
+
```
|
52 |
+
The output is:
|
53 |
+
<br>
|
54 |
+
|
55 |
|
56 |
```python
|
57 |
+
-----------------------------
|
58 |
+
| Organism |
|
59 |
+
-----------------------------
|
60 |
+
Escherichia coli general
|
61 |
|
62 |
+
-----------------------------
|
63 |
+
| Input Protein |
|
64 |
+
-----------------------------
|
65 |
+
MALWMRLLPLLALLALWGPDPAAAFVNQHLCGSHLVEALYLVCGERGFFYTPKTRREAEDLQVGQVELGG
|
66 |
+
|
67 |
+
-----------------------------
|
68 |
+
| Processed Input |
|
69 |
+
-----------------------------
|
70 |
+
M_UNK A_UNK L_UNK W_UNK M_UNK R_UNK L_UNK L_UNK P_UNK L_UNK L_UNK A_UNK L_UNK L_UNK A_UNK L_UNK W_UNK G_UNK P_UNK D_UNK P_UNK A_UNK A_UNK A_UNK F_UNK V_UNK N_UNK Q_UNK H_UNK L_UNK C_UNK G_UNK S_UNK H_UNK L_UNK V_UNK E_UNK A_UNK L_UNK Y_UNK L_UNK V_UNK C_UNK G_UNK E_UNK R_UNK G_UNK F_UNK F_UNK Y_UNK T_UNK P_UNK K_UNK T_UNK R_UNK R_UNK E_UNK A_UNK E_UNK D_UNK L_UNK Q_UNK V_UNK G_UNK Q_UNK V_UNK E_UNK L_UNK G_UNK G_UNK __UNK
|
71 |
+
|
72 |
+
-----------------------------
|
73 |
+
| Predicted DNA |
|
74 |
+
-----------------------------
|
75 |
+
ATGGCTTTATGGATGCGTCTGCTGCCGCTGCTGGCGCTGCTGGCGCTGTGGGGCCCGGACCCGGCGGCGGCGTTTGTGAATCAGCACCTGTGCGGCAGCCACCTGGTGGAAGCGCTGTATCTGGTGTGCGGTGAGCGCGGCTTCTTCTACACGCCCAAAACCCGCCGCGAAGCGGAAGATCTGCAGGTGGGCCAGGTGGAGCTGGGCGGCTAA
|
76 |
```
|
77 |
|
|
|
|
|
78 |
|
79 |
+
## Additional Resources
|
80 |
+
- **Project Website** <br>
|
81 |
+
https://adibvafa.github.io/CodonTransformer/
|
82 |
+
|
83 |
+
- **GitHub Repository** <br>
|
84 |
+
https://github.com/Adibvafa/CodonTransformer
|
85 |
+
|
86 |
+
- **Google Colab Demo** <br>
|
87 |
+
https://adibvafa.github.io/CodonTransformer/GoogleColab
|
88 |
+
|
89 |
+
- **PyPI Package** <br>
|
90 |
+
https://pypi.org/project/CodonTransformer/
|
91 |
+
|
92 |
+
- **Paper** <br>
|
93 |
+
TBD
|