update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,108 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: apache-2.0
|
3 |
+
tags:
|
4 |
+
- generated_from_trainer
|
5 |
+
metrics:
|
6 |
+
- accuracy
|
7 |
+
model-index:
|
8 |
+
- name: canine-mouse-enhancers
|
9 |
+
results: []
|
10 |
+
---
|
11 |
+
|
12 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
13 |
+
should probably proofread and complete it, then remove this comment. -->
|
14 |
+
|
15 |
+
# canine-mouse-enhancers
|
16 |
+
|
17 |
+
This model is a fine-tuned version of [google/canine-c](https://huggingface.co/google/canine-c) on an unknown dataset.
|
18 |
+
It achieves the following results on the evaluation set:
|
19 |
+
- Loss: 0.9641
|
20 |
+
- Accuracy: 0.7727
|
21 |
+
|
22 |
+
## Model description
|
23 |
+
|
24 |
+
More information needed
|
25 |
+
|
26 |
+
## Intended uses & limitations
|
27 |
+
|
28 |
+
More information needed
|
29 |
+
|
30 |
+
## Training and evaluation data
|
31 |
+
|
32 |
+
More information needed
|
33 |
+
|
34 |
+
## Training procedure
|
35 |
+
|
36 |
+
### Training hyperparameters
|
37 |
+
|
38 |
+
The following hyperparameters were used during training:
|
39 |
+
- learning_rate: 2e-06
|
40 |
+
- train_batch_size: 4
|
41 |
+
- eval_batch_size: 4
|
42 |
+
- seed: 42
|
43 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
44 |
+
- lr_scheduler_type: linear
|
45 |
+
- num_epochs: 50
|
46 |
+
|
47 |
+
### Training results
|
48 |
+
|
49 |
+
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|
50 |
+
|:-------------:|:-----:|:-----:|:---------------:|:--------:|
|
51 |
+
| No log | 1.0 | 242 | 0.6476 | 0.6281 |
|
52 |
+
| No log | 2.0 | 484 | 0.6080 | 0.6860 |
|
53 |
+
| 0.6372 | 3.0 | 726 | 0.5989 | 0.7231 |
|
54 |
+
| 0.6372 | 4.0 | 968 | 0.6285 | 0.6694 |
|
55 |
+
| 0.5955 | 5.0 | 1210 | 0.5904 | 0.6860 |
|
56 |
+
| 0.5955 | 6.0 | 1452 | 0.5782 | 0.7107 |
|
57 |
+
| 0.5812 | 7.0 | 1694 | 0.5845 | 0.6983 |
|
58 |
+
| 0.5812 | 8.0 | 1936 | 0.6186 | 0.6983 |
|
59 |
+
| 0.5901 | 9.0 | 2178 | 0.5814 | 0.7231 |
|
60 |
+
| 0.5901 | 10.0 | 2420 | 0.6152 | 0.7355 |
|
61 |
+
| 0.5535 | 11.0 | 2662 | 0.5556 | 0.7438 |
|
62 |
+
| 0.5535 | 12.0 | 2904 | 0.5476 | 0.7479 |
|
63 |
+
| 0.5566 | 13.0 | 3146 | 0.6583 | 0.7107 |
|
64 |
+
| 0.5566 | 14.0 | 3388 | 0.5571 | 0.7521 |
|
65 |
+
| 0.5419 | 15.0 | 3630 | 0.6231 | 0.7231 |
|
66 |
+
| 0.5419 | 16.0 | 3872 | 0.6068 | 0.7603 |
|
67 |
+
| 0.546 | 17.0 | 4114 | 0.6581 | 0.7273 |
|
68 |
+
| 0.546 | 18.0 | 4356 | 0.6350 | 0.7438 |
|
69 |
+
| 0.5359 | 19.0 | 4598 | 0.7081 | 0.7438 |
|
70 |
+
| 0.5359 | 20.0 | 4840 | 0.6711 | 0.7521 |
|
71 |
+
| 0.5262 | 21.0 | 5082 | 0.8095 | 0.7190 |
|
72 |
+
| 0.5262 | 22.0 | 5324 | 0.7282 | 0.7521 |
|
73 |
+
| 0.5666 | 23.0 | 5566 | 0.7604 | 0.7479 |
|
74 |
+
| 0.5666 | 24.0 | 5808 | 0.8097 | 0.7521 |
|
75 |
+
| 0.5456 | 25.0 | 6050 | 0.8513 | 0.7521 |
|
76 |
+
| 0.5456 | 26.0 | 6292 | 0.7954 | 0.7603 |
|
77 |
+
| 0.5612 | 27.0 | 6534 | 0.8435 | 0.7521 |
|
78 |
+
| 0.5612 | 28.0 | 6776 | 0.9000 | 0.7355 |
|
79 |
+
| 0.5358 | 29.0 | 7018 | 0.9241 | 0.7603 |
|
80 |
+
| 0.5358 | 30.0 | 7260 | 0.9005 | 0.7479 |
|
81 |
+
| 0.5434 | 31.0 | 7502 | 0.8875 | 0.7645 |
|
82 |
+
| 0.5434 | 32.0 | 7744 | 0.8878 | 0.7686 |
|
83 |
+
| 0.5434 | 33.0 | 7986 | 0.9162 | 0.7645 |
|
84 |
+
| 0.5066 | 34.0 | 8228 | 0.8665 | 0.7686 |
|
85 |
+
| 0.5066 | 35.0 | 8470 | 0.8756 | 0.7686 |
|
86 |
+
| 0.5276 | 36.0 | 8712 | 0.9723 | 0.7603 |
|
87 |
+
| 0.5276 | 37.0 | 8954 | 1.0044 | 0.7521 |
|
88 |
+
| 0.4916 | 38.0 | 9196 | 0.9647 | 0.7521 |
|
89 |
+
| 0.4916 | 39.0 | 9438 | 0.9819 | 0.7603 |
|
90 |
+
| 0.4865 | 40.0 | 9680 | 0.9644 | 0.7686 |
|
91 |
+
| 0.4865 | 41.0 | 9922 | 0.9084 | 0.7851 |
|
92 |
+
| 0.4505 | 42.0 | 10164 | 1.0152 | 0.7521 |
|
93 |
+
| 0.4505 | 43.0 | 10406 | 0.9332 | 0.7769 |
|
94 |
+
| 0.4798 | 44.0 | 10648 | 0.9803 | 0.7603 |
|
95 |
+
| 0.4798 | 45.0 | 10890 | 1.0211 | 0.7521 |
|
96 |
+
| 0.4234 | 46.0 | 11132 | 0.9143 | 0.7810 |
|
97 |
+
| 0.4234 | 47.0 | 11374 | 0.9969 | 0.7645 |
|
98 |
+
| 0.4269 | 48.0 | 11616 | 0.9515 | 0.7851 |
|
99 |
+
| 0.4269 | 49.0 | 11858 | 0.9998 | 0.7686 |
|
100 |
+
| 0.4135 | 50.0 | 12100 | 0.9641 | 0.7727 |
|
101 |
+
|
102 |
+
|
103 |
+
### Framework versions
|
104 |
+
|
105 |
+
- Transformers 4.26.1
|
106 |
+
- Pytorch 2.0.0+cu117
|
107 |
+
- Datasets 2.19.0
|
108 |
+
- Tokenizers 0.13.3
|