--- license: apache-2.0 base_model: google-bert/bert-base-uncased tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: 20240327184156_red_mikolov results: [] --- # 20240327184156_red_mikolov This model is a fine-tuned version of [google-bert/bert-base-uncased](https://huggingface.co/google-bert/bert-base-uncased) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0292 - Precision: 0.9583 - Recall: 0.9476 - F1: 0.9529 - Accuracy: 0.9893 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0005 - train_batch_size: 32 - eval_batch_size: 32 - seed: 69 - gradient_accumulation_steps: 8 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 350 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0569 | 0.09 | 300 | 0.0439 | 0.9281 | 0.9188 | 0.9234 | 0.9828 | | 0.0602 | 0.18 | 600 | 0.0475 | 0.9297 | 0.9080 | 0.9187 | 0.9817 | | 0.0586 | 0.27 | 900 | 0.0455 | 0.9277 | 0.9117 | 0.9196 | 0.9820 | | 0.0566 | 0.36 | 1200 | 0.0454 | 0.9269 | 0.9116 | 0.9192 | 0.9821 | | 0.056 | 0.44 | 1500 | 0.0460 | 0.9362 | 0.9050 | 0.9204 | 0.9824 | | 0.0549 | 0.53 | 1800 | 0.0430 | 0.9277 | 0.9244 | 0.9260 | 0.9831 | | 0.0526 | 0.62 | 2100 | 0.0404 | 0.9326 | 0.9218 | 0.9272 | 0.9837 | | 0.0523 | 0.71 | 2400 | 0.0413 | 0.9313 | 0.9243 | 0.9278 | 0.9836 | | 0.0524 | 0.8 | 2700 | 0.0402 | 0.9410 | 0.9136 | 0.9271 | 0.9840 | | 0.0517 | 0.89 | 3000 | 0.0413 | 0.9354 | 0.9198 | 0.9275 | 0.9837 | | 0.0512 | 0.98 | 3300 | 0.0411 | 0.9360 | 0.9148 | 0.9253 | 0.9836 | | 0.0442 | 1.07 | 3600 | 0.0406 | 0.9297 | 0.9285 | 0.9291 | 0.9840 | | 0.0457 | 1.15 | 3900 | 0.0421 | 0.9412 | 0.9161 | 0.9285 | 0.9840 | | 0.0452 | 1.24 | 4200 | 0.0400 | 0.9343 | 0.9281 | 0.9312 | 0.9847 | | 0.0444 | 1.33 | 4500 | 0.0381 | 0.9341 | 0.9329 | 0.9335 | 0.9848 | | 0.0434 | 1.42 | 4800 | 0.0376 | 0.9409 | 0.9268 | 0.9338 | 0.9850 | | 0.0437 | 1.51 | 5100 | 0.0385 | 0.9407 | 0.9224 | 0.9315 | 0.9847 | | 0.0424 | 1.6 | 5400 | 0.0364 | 0.9437 | 0.9268 | 0.9352 | 0.9855 | | 0.042 | 1.69 | 5700 | 0.0370 | 0.9445 | 0.9247 | 0.9345 | 0.9853 | | 0.0422 | 1.78 | 6000 | 0.0361 | 0.9408 | 0.9320 | 0.9364 | 0.9854 | | 0.0413 | 1.86 | 6300 | 0.0354 | 0.9426 | 0.9303 | 0.9364 | 0.9857 | | 0.0406 | 1.95 | 6600 | 0.0353 | 0.9408 | 0.9326 | 0.9367 | 0.9860 | | 0.0336 | 2.04 | 6900 | 0.0353 | 0.9438 | 0.9342 | 0.9390 | 0.9862 | | 0.0338 | 2.13 | 7200 | 0.0362 | 0.9500 | 0.9227 | 0.9362 | 0.9860 | | 0.0341 | 2.22 | 7500 | 0.0356 | 0.9428 | 0.9325 | 0.9376 | 0.9861 | | 0.0333 | 2.31 | 7800 | 0.0348 | 0.9423 | 0.9350 | 0.9386 | 0.9863 | | 0.0344 | 2.4 | 8100 | 0.0337 | 0.9454 | 0.9368 | 0.9411 | 0.9869 | | 0.0338 | 2.49 | 8400 | 0.0336 | 0.9486 | 0.9360 | 0.9422 | 0.9869 | | 0.0334 | 2.57 | 8700 | 0.0336 | 0.9482 | 0.9332 | 0.9407 | 0.9866 | | 0.0325 | 2.66 | 9000 | 0.0333 | 0.9491 | 0.9336 | 0.9413 | 0.9868 | | 0.0323 | 2.75 | 9300 | 0.0320 | 0.9467 | 0.9382 | 0.9424 | 0.9873 | | 0.0318 | 2.84 | 9600 | 0.0329 | 0.9531 | 0.9267 | 0.9397 | 0.9867 | | 0.0316 | 2.93 | 9900 | 0.0314 | 0.9497 | 0.9372 | 0.9434 | 0.9874 | | 0.0246 | 3.02 | 10200 | 0.0336 | 0.9510 | 0.9374 | 0.9441 | 0.9874 | | 0.0246 | 3.11 | 10500 | 0.0313 | 0.9513 | 0.9435 | 0.9474 | 0.9880 | | 0.0242 | 3.2 | 10800 | 0.0329 | 0.9500 | 0.9376 | 0.9437 | 0.9876 | | 0.0248 | 3.29 | 11100 | 0.0313 | 0.9544 | 0.9364 | 0.9453 | 0.9881 | | 0.0244 | 3.37 | 11400 | 0.0318 | 0.9509 | 0.9429 | 0.9469 | 0.9879 | | 0.0244 | 3.46 | 11700 | 0.0302 | 0.9546 | 0.9417 | 0.9481 | 0.9882 | | 0.0245 | 3.55 | 12000 | 0.0308 | 0.9504 | 0.9384 | 0.9444 | 0.9879 | | 0.0237 | 3.64 | 12300 | 0.0304 | 0.9510 | 0.9401 | 0.9455 | 0.9880 | | 0.0236 | 3.73 | 12600 | 0.0301 | 0.9572 | 0.9367 | 0.9468 | 0.9881 | | 0.0232 | 3.82 | 12900 | 0.0299 | 0.9560 | 0.9417 | 0.9488 | 0.9884 | | 0.0231 | 3.91 | 13200 | 0.0288 | 0.9555 | 0.9446 | 0.9500 | 0.9886 | | 0.0228 | 4.0 | 13500 | 0.0287 | 0.9553 | 0.9450 | 0.9501 | 0.9886 | | 0.0169 | 4.08 | 13800 | 0.0313 | 0.9563 | 0.9426 | 0.9494 | 0.9886 | | 0.0169 | 4.17 | 14100 | 0.0311 | 0.9564 | 0.9434 | 0.9499 | 0.9887 | | 0.0167 | 4.26 | 14400 | 0.0305 | 0.9562 | 0.9478 | 0.9520 | 0.9889 | | 0.0166 | 4.35 | 14700 | 0.0304 | 0.9549 | 0.9478 | 0.9513 | 0.9890 | | 0.0165 | 4.44 | 15000 | 0.0296 | 0.9579 | 0.9453 | 0.9516 | 0.9890 | | 0.0162 | 4.53 | 15300 | 0.0295 | 0.9562 | 0.9492 | 0.9527 | 0.9892 | | 0.0158 | 4.62 | 15600 | 0.0291 | 0.9563 | 0.9483 | 0.9523 | 0.9892 | | 0.0157 | 4.71 | 15900 | 0.0288 | 0.9575 | 0.9505 | 0.9540 | 0.9894 | | 0.0153 | 4.79 | 16200 | 0.0293 | 0.9580 | 0.9472 | 0.9526 | 0.9892 | | 0.0152 | 4.88 | 16500 | 0.0292 | 0.9581 | 0.9476 | 0.9528 | 0.9893 | | 0.0152 | 4.97 | 16800 | 0.0292 | 0.9583 | 0.9476 | 0.9529 | 0.9893 | ### Framework versions - Transformers 4.39.1 - Pytorch 2.2.0a0+6a974be - Datasets 2.18.0 - Tokenizers 0.15.2