|
from transformers import Blip2Processor, Blip2Model, Blip2ForConditionalGeneration |
|
from typing import Dict, List, Any |
|
from PIL import Image |
|
from transformers import pipeline |
|
import requests |
|
import torch |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
""" |
|
path: |
|
""" |
|
self.device = "cuda" if torch.cuda.is_available() else "cpu" |
|
self.processor = Blip2Processor.from_pretrained(path) |
|
self.generate_model = Blip2ForConditionalGeneration.from_pretrained(path, torch_dtype=torch.float16) |
|
self.generate_model.to(self.device) |
|
|
|
self.feature_model = Blip2Model.from_pretrained(path, torch_dtype=torch.float16) |
|
self.feature_model.to(self.device) |
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
result = {} |
|
inputs = data.pop("inputs", data) |
|
image_url = inputs['image_url'] |
|
if "prompt" in inputs: |
|
prompt = inputs["prompt"] |
|
else: |
|
prompt = None |
|
if "extract_feature" in inputs: |
|
extract_feature = inputs["extract_feature"] |
|
else: |
|
extract_feature = False |
|
|
|
image = Image.open(requests.get(image_url, stream=True).raw) |
|
processed_image = self.processor(images=image, return_tensors="pt").to(self.device, torch.float16) |
|
generated_ids = self.generate_model.generate(**processed_image) |
|
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
result["image_caption"] = generated_text |
|
if extract_feature: |
|
caption_feature = self.feature_model(**processed_image) |
|
result["caption_feature"] = caption_feature |
|
|
|
if prompt: |
|
prompt_image_processed = self.processor(images=image, text=prompt, return_tensors="pt").to(self.device, torch.float16) |
|
generated_ids = self.generate_model.generate(**prompt_image_processed) |
|
generated_text = self.processor.batch_decode(generated_ids, skip_special_tokens=True)[0].strip() |
|
result["image_prompt"] = generated_text |
|
pass |
|
if extract_feature: |
|
prompt_feature = self.feature_model(**prompt_image_processed) |
|
result["prompt_feature"] = prompt_feature |
|
|
|
return result |
|
|