--- language: en tags: - text-classification tasks: - text-classification dataset_name: New --- # Model Card for acuvity/model_integration_test ## Model Details ### Model Description Auto Fine-tuned acuvity/model_integration_test for text-classification task. The run id is v0.0.4 - **Developed by:** Auto-Finetune Bot - **Funded by [optional]:** Auto-Finetune Bot - **Shared by [optional]:** Auto-Finetune Bot - **Model type:** text-classification - **Language(s) (NLP):** en - **License:** Closed Source - **Finetuned from model [optional]:** acuvity/model_integration_test ### Model Sources [optional] - **Repository:** [acuvity/model_integration_test](https://huggingface.co/acuvity/acuvity/model_integration_test) - **Paper [optional]:** [More Information Needed] - **Demo [optional]:** [More Information Needed] ## Uses ### Direct Use [More Information Needed] ### Downstream Use [optional] [More Information Needed] ### Out-of-Scope Use [More Information Needed] ## Bias, Risks, and Limitations [More Information Needed] ### Recommendations Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations. ## How to Get Started with the Model Use the code below to get started with the model. ```python import torch from transformers import AutoTokenizer, AutoModelForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("acuvity/model_integration_test") model = AutoModelForSequenceClassification.from_pretrained("acuvity/model_integration_test") inputs = tokenizer("Hello, my dog is cute", return_tensors="pt") with torch.no_grad(): logits = model(**inputs).logits predicted_class_id = logits.argmax().item() model.config.id2label[predicted_class_id] ``` ```python from transformers import pipeline classifier = pipeline("text-classification", model="acuvity/model_integration_test") classifier("Hello, my dog is cute") ``` ## Training Details ### Training Data (New | v0.0.4) [https://huggingface.co/datasets/acuvity/New] ### Training Procedure #### Preprocessing [optional] No modifications done on the dataset. #### Training Hyperparameters - **Training regime:** {'fp16_bool': False, 'num_train_epochs': 5, 'learning_rate': 1e-05, 'batch_size': 256, 'weight_decay': 0.01} #### Speeds, Sizes, Times [optional] [More Information Needed] ## Evaluation ### Testing Data, Factors & Metrics #### Testing Data (New | v0.0.4) [https://huggingface.co/datasets/acuvity/New] #### Factors [More Information Needed] #### Metrics [More Information Needed] ### Results # Auto Finetune Report for Prompt Injection ## Model URL: acuvity/model_integration_test ## Model Commit: v0.0.4 ## Quick Summary Accuracy: 0.0008237232289950436 Regression: 0.0006873789967815756 Improvement: 0.0009149276196107874 ## Results Summary ### Prompt Injection | v0.0.4 Results | | accuracy | f1 | precision | recall | |:---------|-----------:|----------:|------------:|---------:| | New | 0.999176 | 0.998993 | 1 | 0.997988 | | Baseline | 0.999126 | 0.998993 | 1 | 0.997988 | | Feedback | 1 | 0 | 0 | 0 | | QA | 0.982216 | 0 | 0 | 0 | | PINT | 0.0701696 | 0.0790514 | 0.0421793 | 0.628272 | | Sanity | 0.630435 | 0.773333 | 0.630435 | 1 | ---------------------------------------------------- ### Prompt Injection | v0.0.3 Results | | accuracy | f1 | precision | recall | |:---------|-----------:|----------:|------------:|---------:| | New | 0.998353 | 0.997988 | 1 | 0.995984 | | Baseline | 0.998252 | 0.997988 | 1 | 0.995984 | | Feedback | 1 | 0 | 0 | 0 | | QA | 0.98164 | 0 | 0 | 0 | | PINT | 0.0705022 | 0.0808944 | 0.0432337 | 0.627551 | | Sanity | 0.630435 | 0.773333 | 0.630435 | 1 | #### Summary ## Model Examination [optional] [More Information Needed] ## Environmental Impact Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700). - **Hardware Type:** Quadro P4000 - **Hours used:** 4 Hours - **Cloud Provider:** Paperspace | Digital Ocean - **Compute Region:** NY2 - **Carbon Emitted:** 0, we are carbon neutral ## Technical Specifications [optional] ### Model Architecture and Objective acuvity/model_integration_test ### Compute Infrastructure | | 0 | |:-----------------|:---------------------------------------------| | platform | Linux | | platform-release | 5.15.0-130-generic | | platform-version | #140-Ubuntu SMP Wed Dec 18 17:59:53 UTC 2024 | | architecture | x86_64 | | processor | x86_64 | | ram | 29 GB | #### Hardware Quadro P4000 #### Software | | 0 | |:---------------------|:------------| | python_version | 3.10.16 | | pytorch_version | 2.5.1+cu124 | | transformers_version | 4.47.1 | | datasets_version | 3.2.0 | ## Citation [optional] **BibTeX:** [More Information Needed] **APA:** [More Information Needed] ## Glossary [optional] [More Information Needed] ## More Information [optional] [More Information Needed] ## Model Card Authors [optional] acuvity ## Model Card Contact [acuvity@acuvity.ai](mailto:acuvity@acuvity.ai)