Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
@@ -1,9 +1,13 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
tags:
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
# Model Card for
|
7 |
|
8 |
<!-- Provide a quick summary of what the model is/does. -->
|
9 |
|
@@ -15,21 +19,21 @@ tags: []
|
|
15 |
|
16 |
<!-- Provide a longer summary of what this model is. -->
|
17 |
|
18 |
-
|
19 |
|
20 |
-
- **Developed by:**
|
21 |
-
- **Funded by [optional]:**
|
22 |
-
- **Shared by [optional]:**
|
23 |
-
- **Model type:**
|
24 |
-
- **Language(s) (NLP):**
|
25 |
-
- **License:**
|
26 |
-
- **Finetuned from model [optional]:**
|
27 |
|
28 |
### Model Sources [optional]
|
29 |
|
30 |
<!-- Provide the basic links for the model. -->
|
31 |
|
32 |
-
- **Repository:** [
|
33 |
- **Paper [optional]:** [More Information Needed]
|
34 |
- **Demo [optional]:** [More Information Needed]
|
35 |
|
@@ -71,7 +75,27 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
71 |
|
72 |
Use the code below to get started with the model.
|
73 |
|
74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
75 |
|
76 |
## Training Details
|
77 |
|
@@ -79,7 +103,7 @@ Use the code below to get started with the model.
|
|
79 |
|
80 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
81 |
|
82 |
-
|
83 |
|
84 |
### Training Procedure
|
85 |
|
@@ -87,12 +111,12 @@ Use the code below to get started with the model.
|
|
87 |
|
88 |
#### Preprocessing [optional]
|
89 |
|
90 |
-
|
91 |
|
92 |
|
93 |
#### Training Hyperparameters
|
94 |
|
95 |
-
- **Training regime:**
|
96 |
|
97 |
#### Speeds, Sizes, Times [optional]
|
98 |
|
@@ -110,7 +134,7 @@ Use the code below to get started with the model.
|
|
110 |
|
111 |
<!-- This should link to a Dataset Card if possible. -->
|
112 |
|
113 |
-
|
114 |
|
115 |
#### Factors
|
116 |
|
@@ -126,7 +150,41 @@ Use the code below to get started with the model.
|
|
126 |
|
127 |
### Results
|
128 |
|
129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
130 |
|
131 |
#### Summary
|
132 |
|
@@ -144,29 +202,41 @@ Use the code below to get started with the model.
|
|
144 |
|
145 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
|
147 |
-
- **Hardware Type:**
|
148 |
-
- **Hours used:**
|
149 |
-
- **Cloud Provider:**
|
150 |
-
- **Compute Region:**
|
151 |
-
- **Carbon Emitted:**
|
152 |
|
153 |
## Technical Specifications [optional]
|
154 |
|
155 |
### Model Architecture and Objective
|
156 |
|
157 |
-
|
158 |
|
159 |
### Compute Infrastructure
|
160 |
|
161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
162 |
|
163 |
#### Hardware
|
164 |
|
165 |
-
|
166 |
|
167 |
#### Software
|
168 |
|
169 |
-
|
|
|
|
|
|
|
|
|
|
|
170 |
|
171 |
## Citation [optional]
|
172 |
|
@@ -192,8 +262,8 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
192 |
|
193 |
## Model Card Authors [optional]
|
194 |
|
195 |
-
|
196 |
|
197 |
## Model Card Contact
|
198 |
|
199 |
-
[
|
|
|
1 |
---
|
2 |
+
language: en
|
3 |
+
tags:
|
4 |
+
- text-classification
|
5 |
+
tasks:
|
6 |
+
- text-classification
|
7 |
+
dataset_name: New
|
8 |
---
|
9 |
|
10 |
+
# Model Card for acuvity/model_integration_test
|
11 |
|
12 |
<!-- Provide a quick summary of what the model is/does. -->
|
13 |
|
|
|
19 |
|
20 |
<!-- Provide a longer summary of what this model is. -->
|
21 |
|
22 |
+
Auto Fine-tuned acuvity/model_integration_test for text-classification task. The run id is v0.0.2
|
23 |
|
24 |
+
- **Developed by:** Auto-Finetune Bot
|
25 |
+
- **Funded by [optional]:** Auto-Finetune Bot
|
26 |
+
- **Shared by [optional]:** Auto-Finetune Bot
|
27 |
+
- **Model type:** text-classification
|
28 |
+
- **Language(s) (NLP):** en
|
29 |
+
- **License:** Closed Source
|
30 |
+
- **Finetuned from model [optional]:** acuvity/model_integration_test
|
31 |
|
32 |
### Model Sources [optional]
|
33 |
|
34 |
<!-- Provide the basic links for the model. -->
|
35 |
|
36 |
+
- **Repository:** [acuvity/model_integration_test](https://huggingface.co/acuvity/acuvity/model_integration_test)
|
37 |
- **Paper [optional]:** [More Information Needed]
|
38 |
- **Demo [optional]:** [More Information Needed]
|
39 |
|
|
|
75 |
|
76 |
Use the code below to get started with the model.
|
77 |
|
78 |
+
|
79 |
+
```python
|
80 |
+
import torch
|
81 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
82 |
+
|
83 |
+
tokenizer = AutoTokenizer.from_pretrained("acuvity/model_integration_test")
|
84 |
+
model = AutoModelForSequenceClassification.from_pretrained("acuvity/model_integration_test")
|
85 |
+
|
86 |
+
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
87 |
+
with torch.no_grad():
|
88 |
+
logits = model(**inputs).logits
|
89 |
+
|
90 |
+
predicted_class_id = logits.argmax().item()
|
91 |
+
model.config.id2label[predicted_class_id]
|
92 |
+
```
|
93 |
+
```python
|
94 |
+
from transformers import pipeline
|
95 |
+
classifier = pipeline("text-classification", model="acuvity/model_integration_test")
|
96 |
+
classifier("Hello, my dog is cute")
|
97 |
+
```
|
98 |
+
|
99 |
|
100 |
## Training Details
|
101 |
|
|
|
103 |
|
104 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
105 |
|
106 |
+
(New | v0.0.2) [https://huggingface.co/datasets/acuvity/New]
|
107 |
|
108 |
### Training Procedure
|
109 |
|
|
|
111 |
|
112 |
#### Preprocessing [optional]
|
113 |
|
114 |
+
No modifications done on the dataset.
|
115 |
|
116 |
|
117 |
#### Training Hyperparameters
|
118 |
|
119 |
+
- **Training regime:** {'fp16_bool': False, 'num_train_epochs': 5, 'learning_rate': 1e-05, 'batch_size': 256, 'weight_decay': 0.01} <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
120 |
|
121 |
#### Speeds, Sizes, Times [optional]
|
122 |
|
|
|
134 |
|
135 |
<!-- This should link to a Dataset Card if possible. -->
|
136 |
|
137 |
+
(New | v0.0.2) [https://huggingface.co/datasets/acuvity/New]
|
138 |
|
139 |
#### Factors
|
140 |
|
|
|
150 |
|
151 |
### Results
|
152 |
|
153 |
+
|
154 |
+
# Auto Finetune Report for Prompt Injection
|
155 |
+
## Model URL: acuvity/model_integration_test
|
156 |
+
## Model Commit: v0.0.2
|
157 |
+
|
158 |
+
## Quick Summary
|
159 |
+
|
160 |
+
Accuracy: 0.014995313964386137
|
161 |
+
Regression: 0.030901660532351393
|
162 |
+
Improvement: 0.14807888125828456
|
163 |
+
|
164 |
+
## Results Summary
|
165 |
+
|
166 |
+
### Prompt Injection | v0.0.2 Results
|
167 |
+
|
168 |
+
| | accuracy | f1 | precision | recall |
|
169 |
+
|:---------|-----------:|----------:|------------:|---------:|
|
170 |
+
| New | 0.996251 | 0.995984 | 1 | 0.992 |
|
171 |
+
| Baseline | 0.998 | 0.997988 | 1 | 0.995984 |
|
172 |
+
| Feedback | 0.833333 | 0 | 0 | 0 |
|
173 |
+
| QA | 0.980398 | 0 | 0 | 0 |
|
174 |
+
| PINT | 0.0804789 | 0.0972902 | 0.0523726 | 0.683486 |
|
175 |
+
| Sanity | 0.652174 | 0.789474 | 0.652174 | 1 |
|
176 |
+
----------------------------------------------------
|
177 |
+
### Prompt Injection | v0.0.1 Results
|
178 |
+
| | accuracy | f1 | precision | recall |
|
179 |
+
|:---------|-----------:|---------:|------------:|---------:|
|
180 |
+
| New | 0.981256 | 0.980159 | 0.995968 | 0.964844 |
|
181 |
+
| Baseline | 0.993 | 0.992965 | 0.995968 | 0.98998 |
|
182 |
+
| Feedback | 0 | 0 | 0 | 0 |
|
183 |
+
| QA | 0.973455 | 0 | 0 | 0 |
|
184 |
+
| PINT | 0.122049 | 0.175515 | 0.0987698 | 0.787115 |
|
185 |
+
| Sanity | 0.76087 | 0.864198 | 0.76087 | 1 |
|
186 |
+
|
187 |
+
|
188 |
|
189 |
#### Summary
|
190 |
|
|
|
202 |
|
203 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
204 |
|
205 |
+
- **Hardware Type:** Quadro P4000
|
206 |
+
- **Hours used:** 4 Hours
|
207 |
+
- **Cloud Provider:** Paperspace | Digital Ocean
|
208 |
+
- **Compute Region:** NY2
|
209 |
+
- **Carbon Emitted:** 0, we are carbon neutral
|
210 |
|
211 |
## Technical Specifications [optional]
|
212 |
|
213 |
### Model Architecture and Objective
|
214 |
|
215 |
+
acuvity/model_integration_test
|
216 |
|
217 |
### Compute Infrastructure
|
218 |
|
219 |
+
| | 0 |
|
220 |
+
|:-----------------|:---------------------------------------------|
|
221 |
+
| platform | Linux |
|
222 |
+
| platform-release | 5.15.0-130-generic |
|
223 |
+
| platform-version | #140-Ubuntu SMP Wed Dec 18 17:59:53 UTC 2024 |
|
224 |
+
| architecture | x86_64 |
|
225 |
+
| processor | x86_64 |
|
226 |
+
| ram | 29 GB |
|
227 |
|
228 |
#### Hardware
|
229 |
|
230 |
+
Quadro P4000
|
231 |
|
232 |
#### Software
|
233 |
|
234 |
+
| | 0 |
|
235 |
+
|:---------------------|:------------|
|
236 |
+
| python_version | 3.10.12 |
|
237 |
+
| pytorch_version | 2.1.2+cu121 |
|
238 |
+
| transformers_version | 4.49.0 |
|
239 |
+
| datasets_version | 3.2.0 |
|
240 |
|
241 |
## Citation [optional]
|
242 |
|
|
|
262 |
|
263 |
## Model Card Authors [optional]
|
264 |
|
265 |
+
acuvity
|
266 |
|
267 |
## Model Card Contact
|
268 |
|
269 |
+
[[email protected]](mailto:[email protected])
|