vishalp23 commited on
Commit
b8eddb1
·
verified ·
1 Parent(s): dd6bcbe

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +99 -29
README.md CHANGED
@@ -1,9 +1,13 @@
1
  ---
2
- library_name: transformers
3
- tags: []
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
7
 
8
  <!-- Provide a quick summary of what the model is/does. -->
9
 
@@ -15,21 +19,21 @@ tags: []
15
 
16
  <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
  ### Model Sources [optional]
29
 
30
  <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
  - **Paper [optional]:** [More Information Needed]
34
  - **Demo [optional]:** [More Information Needed]
35
 
@@ -71,7 +75,27 @@ Users (both direct and downstream) should be made aware of the risks, biases and
71
 
72
  Use the code below to get started with the model.
73
 
74
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
75
 
76
  ## Training Details
77
 
@@ -79,7 +103,7 @@ Use the code below to get started with the model.
79
 
80
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
 
82
- [More Information Needed]
83
 
84
  ### Training Procedure
85
 
@@ -87,12 +111,12 @@ Use the code below to get started with the model.
87
 
88
  #### Preprocessing [optional]
89
 
90
- [More Information Needed]
91
 
92
 
93
  #### Training Hyperparameters
94
 
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
 
97
  #### Speeds, Sizes, Times [optional]
98
 
@@ -110,7 +134,7 @@ Use the code below to get started with the model.
110
 
111
  <!-- This should link to a Dataset Card if possible. -->
112
 
113
- [More Information Needed]
114
 
115
  #### Factors
116
 
@@ -126,7 +150,41 @@ Use the code below to get started with the model.
126
 
127
  ### Results
128
 
129
- [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
130
 
131
  #### Summary
132
 
@@ -144,29 +202,41 @@ Use the code below to get started with the model.
144
 
145
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
 
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
 
153
  ## Technical Specifications [optional]
154
 
155
  ### Model Architecture and Objective
156
 
157
- [More Information Needed]
158
 
159
  ### Compute Infrastructure
160
 
161
- [More Information Needed]
 
 
 
 
 
 
 
162
 
163
  #### Hardware
164
 
165
- [More Information Needed]
166
 
167
  #### Software
168
 
169
- [More Information Needed]
 
 
 
 
 
170
 
171
  ## Citation [optional]
172
 
@@ -192,8 +262,8 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
192
 
193
  ## Model Card Authors [optional]
194
 
195
- [More Information Needed]
196
 
197
  ## Model Card Contact
198
 
199
- [More Information Needed]
 
1
  ---
2
+ language: en
3
+ tags:
4
+ - text-classification
5
+ tasks:
6
+ - text-classification
7
+ dataset_name: New
8
  ---
9
 
10
+ # Model Card for acuvity/model_integration_test
11
 
12
  <!-- Provide a quick summary of what the model is/does. -->
13
 
 
19
 
20
  <!-- Provide a longer summary of what this model is. -->
21
 
22
+ Auto Fine-tuned acuvity/model_integration_test for text-classification task. The run id is v0.0.2
23
 
24
+ - **Developed by:** Auto-Finetune Bot
25
+ - **Funded by [optional]:** Auto-Finetune Bot
26
+ - **Shared by [optional]:** Auto-Finetune Bot
27
+ - **Model type:** text-classification
28
+ - **Language(s) (NLP):** en
29
+ - **License:** Closed Source
30
+ - **Finetuned from model [optional]:** acuvity/model_integration_test
31
 
32
  ### Model Sources [optional]
33
 
34
  <!-- Provide the basic links for the model. -->
35
 
36
+ - **Repository:** [acuvity/model_integration_test](https://huggingface.co/acuvity/acuvity/model_integration_test)
37
  - **Paper [optional]:** [More Information Needed]
38
  - **Demo [optional]:** [More Information Needed]
39
 
 
75
 
76
  Use the code below to get started with the model.
77
 
78
+
79
+ ```python
80
+ import torch
81
+ from transformers import AutoTokenizer, AutoModelForSequenceClassification
82
+
83
+ tokenizer = AutoTokenizer.from_pretrained("acuvity/model_integration_test")
84
+ model = AutoModelForSequenceClassification.from_pretrained("acuvity/model_integration_test")
85
+
86
+ inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
87
+ with torch.no_grad():
88
+ logits = model(**inputs).logits
89
+
90
+ predicted_class_id = logits.argmax().item()
91
+ model.config.id2label[predicted_class_id]
92
+ ```
93
+ ```python
94
+ from transformers import pipeline
95
+ classifier = pipeline("text-classification", model="acuvity/model_integration_test")
96
+ classifier("Hello, my dog is cute")
97
+ ```
98
+
99
 
100
  ## Training Details
101
 
 
103
 
104
  <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
105
 
106
+ (New | v0.0.2) [https://huggingface.co/datasets/acuvity/New]
107
 
108
  ### Training Procedure
109
 
 
111
 
112
  #### Preprocessing [optional]
113
 
114
+ No modifications done on the dataset.
115
 
116
 
117
  #### Training Hyperparameters
118
 
119
+ - **Training regime:** {'fp16_bool': False, 'num_train_epochs': 5, 'learning_rate': 1e-05, 'batch_size': 256, 'weight_decay': 0.01} <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
120
 
121
  #### Speeds, Sizes, Times [optional]
122
 
 
134
 
135
  <!-- This should link to a Dataset Card if possible. -->
136
 
137
+ (New | v0.0.2) [https://huggingface.co/datasets/acuvity/New]
138
 
139
  #### Factors
140
 
 
150
 
151
  ### Results
152
 
153
+
154
+ # Auto Finetune Report for Prompt Injection
155
+ ## Model URL: acuvity/model_integration_test
156
+ ## Model Commit: v0.0.2
157
+
158
+ ## Quick Summary
159
+
160
+ Accuracy: 0.014995313964386137
161
+ Regression: 0.030901660532351393
162
+ Improvement: 0.14807888125828456
163
+
164
+ ## Results Summary
165
+
166
+ ### Prompt Injection | v0.0.2 Results
167
+
168
+ | | accuracy | f1 | precision | recall |
169
+ |:---------|-----------:|----------:|------------:|---------:|
170
+ | New | 0.996251 | 0.995984 | 1 | 0.992 |
171
+ | Baseline | 0.998 | 0.997988 | 1 | 0.995984 |
172
+ | Feedback | 0.833333 | 0 | 0 | 0 |
173
+ | QA | 0.980398 | 0 | 0 | 0 |
174
+ | PINT | 0.0804789 | 0.0972902 | 0.0523726 | 0.683486 |
175
+ | Sanity | 0.652174 | 0.789474 | 0.652174 | 1 |
176
+ ----------------------------------------------------
177
+ ### Prompt Injection | v0.0.1 Results
178
+ | | accuracy | f1 | precision | recall |
179
+ |:---------|-----------:|---------:|------------:|---------:|
180
+ | New | 0.981256 | 0.980159 | 0.995968 | 0.964844 |
181
+ | Baseline | 0.993 | 0.992965 | 0.995968 | 0.98998 |
182
+ | Feedback | 0 | 0 | 0 | 0 |
183
+ | QA | 0.973455 | 0 | 0 | 0 |
184
+ | PINT | 0.122049 | 0.175515 | 0.0987698 | 0.787115 |
185
+ | Sanity | 0.76087 | 0.864198 | 0.76087 | 1 |
186
+
187
+
188
 
189
  #### Summary
190
 
 
202
 
203
  Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
204
 
205
+ - **Hardware Type:** Quadro P4000
206
+ - **Hours used:** 4 Hours
207
+ - **Cloud Provider:** Paperspace | Digital Ocean
208
+ - **Compute Region:** NY2
209
+ - **Carbon Emitted:** 0, we are carbon neutral
210
 
211
  ## Technical Specifications [optional]
212
 
213
  ### Model Architecture and Objective
214
 
215
+ acuvity/model_integration_test
216
 
217
  ### Compute Infrastructure
218
 
219
+ | | 0 |
220
+ |:-----------------|:---------------------------------------------|
221
+ | platform | Linux |
222
+ | platform-release | 5.15.0-130-generic |
223
+ | platform-version | #140-Ubuntu SMP Wed Dec 18 17:59:53 UTC 2024 |
224
+ | architecture | x86_64 |
225
+ | processor | x86_64 |
226
+ | ram | 29 GB |
227
 
228
  #### Hardware
229
 
230
+ Quadro P4000
231
 
232
  #### Software
233
 
234
+ | | 0 |
235
+ |:---------------------|:------------|
236
+ | python_version | 3.10.12 |
237
+ | pytorch_version | 2.1.2+cu121 |
238
+ | transformers_version | 4.49.0 |
239
+ | datasets_version | 3.2.0 |
240
 
241
  ## Citation [optional]
242
 
 
262
 
263
  ## Model Card Authors [optional]
264
 
265
+ acuvity
266
 
267
  ## Model Card Contact
268
 
269