Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -1,9 +1,13 @@
|
|
| 1 |
---
|
| 2 |
-
|
| 3 |
-
tags:
|
|
|
|
|
|
|
|
|
|
|
|
|
| 4 |
---
|
| 5 |
|
| 6 |
-
# Model Card for
|
| 7 |
|
| 8 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 9 |
|
|
@@ -15,21 +19,21 @@ tags: []
|
|
| 15 |
|
| 16 |
<!-- Provide a longer summary of what this model is. -->
|
| 17 |
|
| 18 |
-
|
| 19 |
|
| 20 |
-
- **Developed by:**
|
| 21 |
-
- **Funded by [optional]:**
|
| 22 |
-
- **Shared by [optional]:**
|
| 23 |
-
- **Model type:**
|
| 24 |
-
- **Language(s) (NLP):**
|
| 25 |
-
- **License:**
|
| 26 |
-
- **Finetuned from model [optional]:**
|
| 27 |
|
| 28 |
### Model Sources [optional]
|
| 29 |
|
| 30 |
<!-- Provide the basic links for the model. -->
|
| 31 |
|
| 32 |
-
- **Repository:** [
|
| 33 |
- **Paper [optional]:** [More Information Needed]
|
| 34 |
- **Demo [optional]:** [More Information Needed]
|
| 35 |
|
|
@@ -71,7 +75,27 @@ Users (both direct and downstream) should be made aware of the risks, biases and
|
|
| 71 |
|
| 72 |
Use the code below to get started with the model.
|
| 73 |
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
## Training Details
|
| 77 |
|
|
@@ -79,7 +103,7 @@ Use the code below to get started with the model.
|
|
| 79 |
|
| 80 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 81 |
|
| 82 |
-
|
| 83 |
|
| 84 |
### Training Procedure
|
| 85 |
|
|
@@ -87,12 +111,12 @@ Use the code below to get started with the model.
|
|
| 87 |
|
| 88 |
#### Preprocessing [optional]
|
| 89 |
|
| 90 |
-
|
| 91 |
|
| 92 |
|
| 93 |
#### Training Hyperparameters
|
| 94 |
|
| 95 |
-
- **Training regime:**
|
| 96 |
|
| 97 |
#### Speeds, Sizes, Times [optional]
|
| 98 |
|
|
@@ -110,7 +134,7 @@ Use the code below to get started with the model.
|
|
| 110 |
|
| 111 |
<!-- This should link to a Dataset Card if possible. -->
|
| 112 |
|
| 113 |
-
|
| 114 |
|
| 115 |
#### Factors
|
| 116 |
|
|
@@ -126,7 +150,41 @@ Use the code below to get started with the model.
|
|
| 126 |
|
| 127 |
### Results
|
| 128 |
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
#### Summary
|
| 132 |
|
|
@@ -144,29 +202,41 @@ Use the code below to get started with the model.
|
|
| 144 |
|
| 145 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 146 |
|
| 147 |
-
- **Hardware Type:**
|
| 148 |
-
- **Hours used:**
|
| 149 |
-
- **Cloud Provider:**
|
| 150 |
-
- **Compute Region:**
|
| 151 |
-
- **Carbon Emitted:**
|
| 152 |
|
| 153 |
## Technical Specifications [optional]
|
| 154 |
|
| 155 |
### Model Architecture and Objective
|
| 156 |
|
| 157 |
-
|
| 158 |
|
| 159 |
### Compute Infrastructure
|
| 160 |
|
| 161 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 162 |
|
| 163 |
#### Hardware
|
| 164 |
|
| 165 |
-
|
| 166 |
|
| 167 |
#### Software
|
| 168 |
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
## Citation [optional]
|
| 172 |
|
|
@@ -192,8 +262,8 @@ Carbon emissions can be estimated using the [Machine Learning Impact calculator]
|
|
| 192 |
|
| 193 |
## Model Card Authors [optional]
|
| 194 |
|
| 195 |
-
|
| 196 |
|
| 197 |
## Model Card Contact
|
| 198 |
|
| 199 |
-
[
|
|
|
|
| 1 |
---
|
| 2 |
+
language: en
|
| 3 |
+
tags:
|
| 4 |
+
- text-classification
|
| 5 |
+
tasks:
|
| 6 |
+
- text-classification
|
| 7 |
+
dataset_name: New
|
| 8 |
---
|
| 9 |
|
| 10 |
+
# Model Card for acuvity/model_integration_test
|
| 11 |
|
| 12 |
<!-- Provide a quick summary of what the model is/does. -->
|
| 13 |
|
|
|
|
| 19 |
|
| 20 |
<!-- Provide a longer summary of what this model is. -->
|
| 21 |
|
| 22 |
+
Auto Fine-tuned acuvity/model_integration_test for text-classification task. The run id is v0.0.2
|
| 23 |
|
| 24 |
+
- **Developed by:** Auto-Finetune Bot
|
| 25 |
+
- **Funded by [optional]:** Auto-Finetune Bot
|
| 26 |
+
- **Shared by [optional]:** Auto-Finetune Bot
|
| 27 |
+
- **Model type:** text-classification
|
| 28 |
+
- **Language(s) (NLP):** en
|
| 29 |
+
- **License:** Closed Source
|
| 30 |
+
- **Finetuned from model [optional]:** acuvity/model_integration_test
|
| 31 |
|
| 32 |
### Model Sources [optional]
|
| 33 |
|
| 34 |
<!-- Provide the basic links for the model. -->
|
| 35 |
|
| 36 |
+
- **Repository:** [acuvity/model_integration_test](https://huggingface.co/acuvity/acuvity/model_integration_test)
|
| 37 |
- **Paper [optional]:** [More Information Needed]
|
| 38 |
- **Demo [optional]:** [More Information Needed]
|
| 39 |
|
|
|
|
| 75 |
|
| 76 |
Use the code below to get started with the model.
|
| 77 |
|
| 78 |
+
|
| 79 |
+
```python
|
| 80 |
+
import torch
|
| 81 |
+
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 82 |
+
|
| 83 |
+
tokenizer = AutoTokenizer.from_pretrained("acuvity/model_integration_test")
|
| 84 |
+
model = AutoModelForSequenceClassification.from_pretrained("acuvity/model_integration_test")
|
| 85 |
+
|
| 86 |
+
inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
|
| 87 |
+
with torch.no_grad():
|
| 88 |
+
logits = model(**inputs).logits
|
| 89 |
+
|
| 90 |
+
predicted_class_id = logits.argmax().item()
|
| 91 |
+
model.config.id2label[predicted_class_id]
|
| 92 |
+
```
|
| 93 |
+
```python
|
| 94 |
+
from transformers import pipeline
|
| 95 |
+
classifier = pipeline("text-classification", model="acuvity/model_integration_test")
|
| 96 |
+
classifier("Hello, my dog is cute")
|
| 97 |
+
```
|
| 98 |
+
|
| 99 |
|
| 100 |
## Training Details
|
| 101 |
|
|
|
|
| 103 |
|
| 104 |
<!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
|
| 105 |
|
| 106 |
+
(New | v0.0.2) [https://huggingface.co/datasets/acuvity/New]
|
| 107 |
|
| 108 |
### Training Procedure
|
| 109 |
|
|
|
|
| 111 |
|
| 112 |
#### Preprocessing [optional]
|
| 113 |
|
| 114 |
+
No modifications done on the dataset.
|
| 115 |
|
| 116 |
|
| 117 |
#### Training Hyperparameters
|
| 118 |
|
| 119 |
+
- **Training regime:** {'fp16_bool': False, 'num_train_epochs': 5, 'learning_rate': 1e-05, 'batch_size': 256, 'weight_decay': 0.01} <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
|
| 120 |
|
| 121 |
#### Speeds, Sizes, Times [optional]
|
| 122 |
|
|
|
|
| 134 |
|
| 135 |
<!-- This should link to a Dataset Card if possible. -->
|
| 136 |
|
| 137 |
+
(New | v0.0.2) [https://huggingface.co/datasets/acuvity/New]
|
| 138 |
|
| 139 |
#### Factors
|
| 140 |
|
|
|
|
| 150 |
|
| 151 |
### Results
|
| 152 |
|
| 153 |
+
|
| 154 |
+
# Auto Finetune Report for Prompt Injection
|
| 155 |
+
## Model URL: acuvity/model_integration_test
|
| 156 |
+
## Model Commit: v0.0.2
|
| 157 |
+
|
| 158 |
+
## Quick Summary
|
| 159 |
+
|
| 160 |
+
Accuracy: 0.014995313964386137
|
| 161 |
+
Regression: 0.030901660532351393
|
| 162 |
+
Improvement: 0.14807888125828456
|
| 163 |
+
|
| 164 |
+
## Results Summary
|
| 165 |
+
|
| 166 |
+
### Prompt Injection | v0.0.2 Results
|
| 167 |
+
|
| 168 |
+
| | accuracy | f1 | precision | recall |
|
| 169 |
+
|:---------|-----------:|----------:|------------:|---------:|
|
| 170 |
+
| New | 0.996251 | 0.995984 | 1 | 0.992 |
|
| 171 |
+
| Baseline | 0.998 | 0.997988 | 1 | 0.995984 |
|
| 172 |
+
| Feedback | 0.833333 | 0 | 0 | 0 |
|
| 173 |
+
| QA | 0.980398 | 0 | 0 | 0 |
|
| 174 |
+
| PINT | 0.0804789 | 0.0972902 | 0.0523726 | 0.683486 |
|
| 175 |
+
| Sanity | 0.652174 | 0.789474 | 0.652174 | 1 |
|
| 176 |
+
----------------------------------------------------
|
| 177 |
+
### Prompt Injection | v0.0.1 Results
|
| 178 |
+
| | accuracy | f1 | precision | recall |
|
| 179 |
+
|:---------|-----------:|---------:|------------:|---------:|
|
| 180 |
+
| New | 0.981256 | 0.980159 | 0.995968 | 0.964844 |
|
| 181 |
+
| Baseline | 0.993 | 0.992965 | 0.995968 | 0.98998 |
|
| 182 |
+
| Feedback | 0 | 0 | 0 | 0 |
|
| 183 |
+
| QA | 0.973455 | 0 | 0 | 0 |
|
| 184 |
+
| PINT | 0.122049 | 0.175515 | 0.0987698 | 0.787115 |
|
| 185 |
+
| Sanity | 0.76087 | 0.864198 | 0.76087 | 1 |
|
| 186 |
+
|
| 187 |
+
|
| 188 |
|
| 189 |
#### Summary
|
| 190 |
|
|
|
|
| 202 |
|
| 203 |
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
| 204 |
|
| 205 |
+
- **Hardware Type:** Quadro P4000
|
| 206 |
+
- **Hours used:** 4 Hours
|
| 207 |
+
- **Cloud Provider:** Paperspace | Digital Ocean
|
| 208 |
+
- **Compute Region:** NY2
|
| 209 |
+
- **Carbon Emitted:** 0, we are carbon neutral
|
| 210 |
|
| 211 |
## Technical Specifications [optional]
|
| 212 |
|
| 213 |
### Model Architecture and Objective
|
| 214 |
|
| 215 |
+
acuvity/model_integration_test
|
| 216 |
|
| 217 |
### Compute Infrastructure
|
| 218 |
|
| 219 |
+
| | 0 |
|
| 220 |
+
|:-----------------|:---------------------------------------------|
|
| 221 |
+
| platform | Linux |
|
| 222 |
+
| platform-release | 5.15.0-130-generic |
|
| 223 |
+
| platform-version | #140-Ubuntu SMP Wed Dec 18 17:59:53 UTC 2024 |
|
| 224 |
+
| architecture | x86_64 |
|
| 225 |
+
| processor | x86_64 |
|
| 226 |
+
| ram | 29 GB |
|
| 227 |
|
| 228 |
#### Hardware
|
| 229 |
|
| 230 |
+
Quadro P4000
|
| 231 |
|
| 232 |
#### Software
|
| 233 |
|
| 234 |
+
| | 0 |
|
| 235 |
+
|:---------------------|:------------|
|
| 236 |
+
| python_version | 3.10.12 |
|
| 237 |
+
| pytorch_version | 2.1.2+cu121 |
|
| 238 |
+
| transformers_version | 4.49.0 |
|
| 239 |
+
| datasets_version | 3.2.0 |
|
| 240 |
|
| 241 |
## Citation [optional]
|
| 242 |
|
|
|
|
| 262 |
|
| 263 |
## Model Card Authors [optional]
|
| 264 |
|
| 265 |
+
acuvity
|
| 266 |
|
| 267 |
## Model Card Contact
|
| 268 |
|
| 269 |
+
[[email protected]](mailto:[email protected])
|