--- library_name: transformers license: agpl-3.0 base_model: vinai/phobert-base-v2 tags: - generated_from_trainer metrics: - accuracy - f1 - precision - recall model-index: - name: 7k-PhoContent-10304 results: [] --- # 7k-PhoContent-10304 This model is a fine-tuned version of [vinai/phobert-base-v2](https://huggingface.co/vinai/phobert-base-v2) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2320 - Accuracy: 0.9419 - F1: 0.9150 - Precision: 0.9233 - Recall: 0.9074 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 256 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-------:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.7443 | 2.6144 | 100 | 0.2005 | 0.9360 | 0.9056 | 0.9183 | 0.8945 | | 0.348 | 5.2288 | 200 | 0.2175 | 0.9360 | 0.9024 | 0.9329 | 0.8792 | | 0.348 | 7.8431 | 300 | 0.1926 | 0.9419 | 0.9128 | 0.9342 | 0.8952 | | 0.1555 | 10.4575 | 400 | 0.2010 | 0.9457 | 0.9197 | 0.9344 | 0.9069 | | 0.0984 | 13.0719 | 500 | 0.2211 | 0.9302 | 0.8967 | 0.9106 | 0.8846 | | 0.0984 | 15.6863 | 600 | 0.2338 | 0.9322 | 0.8999 | 0.9124 | 0.8889 | | 0.065 | 18.3007 | 700 | 0.2320 | 0.9419 | 0.9150 | 0.9233 | 0.9074 | ### Framework versions - Transformers 4.45.1 - Pytorch 2.4.0 - Datasets 3.0.1 - Tokenizers 0.20.0