abideen commited on
Commit
08cdd19
·
verified ·
1 Parent(s): a78e683

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +169 -179
README.md CHANGED
@@ -1,199 +1,189 @@
1
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  library_name: transformers
3
- license: apache-2.0
4
  ---
 
 
5
 
6
- # Model Card for Model ID
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
9
 
 
10
 
 
 
11
 
12
- ## Model Details
13
 
14
- ### Model Description
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
 
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
 
35
 
36
- ## Uses
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
 
 
 
 
 
39
 
40
- ### Direct Use
 
 
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
-
46
- ### Downstream Use [optional]
47
-
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
-
50
- [More Information Needed]
51
-
52
- ### Out-of-Scope Use
53
-
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
-
56
- [More Information Needed]
57
-
58
- ## Bias, Risks, and Limitations
59
-
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
-
62
- [More Information Needed]
63
-
64
- ### Recommendations
65
-
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
-
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
-
70
- ## How to Get Started with the Model
71
-
72
- Use the code below to get started with the model.
73
-
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
+ license: cc-by-nc-4.0
3
+ base_model: google/gemma-2b-it
4
+ tags:
5
+ - generated_from_trainer
6
+ - axolotl
7
+ - gemma
8
+ - instruct
9
+ - finetune
10
+ - chatml
11
+ - gpt4
12
+ - synthetic data
13
+ - distillation
14
+ model-index:
15
+ - name: gemma-2b-openhermes
16
+ results: []
17
+ datasets:
18
+ - mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
19
+ language:
20
+ - en
21
  library_name: transformers
22
+ pipeline_tag: text-generation
23
  ---
24
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
25
+ should probably proofread and complete it, then remove this comment. -->
26
 
27
+ # gemma-2b-openhermes
28
 
 
29
 
30
+ ![image/jpeg](https://cdn-uploads.huggingface.co/production/uploads/64e380b2e12618b261fa6ba0/9bmxL8Lt7hBaKlKHVxtew.jpeg)
31
 
32
+ gemma-2b-openhermes is a variant of the Gemma 2B language model, which has been further fine-tuned on the OpenHermes-2.5 preference dataset
33
+ using QLoRA.
34
 
 
35
 
36
+ * [google/gemma-2b-it](https://huggingface.co/google/gemma-2b-it)
37
+ * [mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha](https://huggingface.co/datasets/mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha)
38
 
39
+ </details><br>
40
 
41
+ ## Usage
42
 
43
+ ### Chat Template
 
 
 
 
 
 
44
 
45
+ The instruction-tuned models use a chat template that must be adhered to for conversational use.
46
+ The easiest way to apply it is using the tokenizer's built-in chat template, as shown in the following snippet.
47
 
48
+ Let's load the model and apply the chat template to a conversation. In this example, we'll start with a single user interaction:
49
 
50
+ ```py
51
+ from transformers import AutoTokenizer, AutoModelForCausalLM
52
+ import transformers
53
+ import torch
54
 
55
+ model_id = "abideen/gemma-2b-openhermes"
56
+ dtype = torch.bfloat16
57
 
58
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
59
+ model = AutoModelForCausalLM.from_pretrained(
60
+ model_id,
61
+ device_map="cuda",
62
+ torch_dtype=dtype,
63
+ )
64
 
65
+ chat = [{ "role": "user", "content": "What is a Language Model?" }]
66
+ prompt = tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
67
+ ```
68
 
69
+ After the prompt is ready, generation can be performed like this:
70
 
71
+ ```py
72
+ inputs = tokenizer.encode(prompt, add_special_tokens=True, return_tensors="pt")
73
+ outputs = model.generate(input_ids=inputs.to(model.device), max_new_tokens=250)
74
+ print(tokenizer.decode(outputs[0]))
75
+ ```
76
+
77
+ ### Inputs and outputs
78
+
79
+ * **Input:** Text string, such as a question, a prompt, or a document to be
80
+ summarized.
81
+ * **Output:** Generated English-language text in response to the input, such
82
+ as an answer to a question, or a summary of a document.
83
+
84
+ ## Evaluation data
85
+
86
+ 🏆 Evals coming soon.
87
+
88
+ ### Training hyperparameters
89
+
90
+ The following hyperparameters were used during training:
91
+ - learning_rate: 5e-07
92
+ - train_batch_size: 1
93
+ - eval_batch_size: 8
94
+ - seed: 42
95
+ - gradient_accumulation_steps: 8
96
+ - total_train_batch_size: 8
97
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
98
+ - lr_scheduler_type: cosine
99
+ - lr_scheduler_warmup_steps: 100
100
+ - training_steps: 1000
101
+
102
+
103
+ ### 📝 Axolotl Configuration
104
+
105
+ ```yaml
106
+ base_model: google/gemma-2b-it
107
+ model_type: GemmaForCausalLM
108
+ tokenizer_type: GemmaTokenizer
109
+ trust_remote_code: true
110
+
111
+ load_in_8bit: false
112
+ load_in_4bit: true
113
+ strict: false
114
+
115
+ rl: dpo
116
+ chat_template: chatml
117
+ datasets:
118
+ - path: mlabonne/chatml-OpenHermes2.5-dpo-binarized-alpha
119
+ split: train
120
+ type: chatml.intel
121
+ dataset_prepared_path:
122
+ val_set_size: 0.01
123
+ output_dir: ./out
124
+
125
+ adapter: qlora
126
+ lora_model_dir:
127
+
128
+ sequence_len: 1800
129
+ sample_packing: false
130
+ pad_to_sequence_len: false
131
+
132
+ lora_r: 16
133
+ lora_alpha: 16
134
+ lora_dropout: 0.05
135
+ lora_target_linear: true
136
+ lora_fan_in_fan_out:
137
+ lora_target_modules:
138
+
139
+ wandb_project: gemma
140
+ wandb_entity:
141
+ wandb_watch:
142
+ wandb_name:
143
+ wandb_log_model:
144
+
145
+ gradient_accumulation_steps: 8
146
+ micro_batch_size: 1
147
+ num_epochs: 1
148
+ optimizer: paged_adamw_32bit
149
+ lr_scheduler: cosine
150
+ learning_rate: 5e-7
151
+
152
+ train_on_inputs: false
153
+ group_by_length: false
154
+ bf16: true
155
+ fp16: false
156
+ tf32: true
157
+
158
+ gradient_checkpointing: true
159
+ early_stopping_patience:
160
+ resume_from_checkpoint:
161
+ local_rank:
162
+ logging_steps: 1
163
+ xformers_attention:
164
+ flash_attention: false
165
+
166
+ warmup_steps: 100
167
+ evals_per_epoch: 1
168
+ eval_table_size:
169
+ eval_table_max_new_tokens: 128
170
+ save_steps: 1000
171
+ max_steps: 1300
172
+ debug:
173
+ deepspeed:
174
+ weight_decay: 0.0
175
+ fsdp:
176
+ fsdp_config:
177
+ special_tokens:
178
+ ```
179
+
180
+
181
+ ### Framework versions
182
+
183
+ - Transformers 4.39.0.dev0
184
+ - Pytorch 2.1.2+cu118
185
+ - Datasets 2.17.0
186
+ - Tokenizers 0.15.0
187
+ - axolotl: 0.4.0
188
+
189
+ [<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl)