File size: 18,498 Bytes
e97f4e2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
import os
import math
import numpy as np
import time
from dataclasses import dataclass
import tiktoken
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
# import code; code.interact(local=locals())

from model import GPT
from dataloader import DataLoaderLite
from hellaswag_eval import render_example, iterate_examples, get_most_likely_row

torch.set_float32_matmul_precision('high')    # enable TF32 precision

# set torch compile to True (if it doesn't throws any error) to speed up training
use_torch_compile = False


class Trainer:
    def __init__(
            self, 
            model, 
            optimizer, 
            train_loader, 
            val_loader, 
            token_encoder, 
            eval_freq, 
            grad_accum_steps, 
            ddp, 
            ddp_rank, 
            ddp_world_size, 
            device, 
            logpath
    ):
        self.ddp = ddp
        self.ddp_rank = ddp_rank
        self.master_process = ddp_rank == 0
        self.ddp_world_size = ddp_world_size

        self.model = model
        self.optimizer = optimizer
        self.train_loader = train_loader
        self.val_loader = val_loader
        self.token_encoder = token_encoder

        self.eval_freq = eval_freq
        self.grad_accum_steps = grad_accum_steps
        self.device = device
        self.device_type = 'cuda' if device.startswith('cuda') else 'cpu'
        self.logpath = logpath


    def train(
        self, 
        max_steps, 
        warmup_steps, 
        max_lr, 
        min_lr
    ):
        for step in range(max_steps):
            t0 = time.time()
            self.is_last_step = (step == max_steps - 1)

            # evaluate validation loss
            if step % self.eval_freq == 0 or self.is_last_step:
                self.evaluate_validation(step)

            # evaluate model performance on HellaSwag every once in a while
            if ((step > 0 and step % self.eval_freq == 0) or self.is_last_step) and (not use_torch_compile):
                self.evaluate_helloswag(step)

            # generate sequences from the model every once in a while
            if ((step > 0 and step % self.eval_freq == 0) or self.is_last_step) and (not use_torch_compile):
                self.generate_sequences(num_seq=5, max_tokens=32)

            # training loop starts here
            self.model.train()    # sets model to train mode
            self.optimizer.zero_grad()    # resets all gradients
            batch_loss = 0.0
            
            for mini_step in range(self.grad_accum_steps):
                inp, tar = self.train_loader.next_batch()
                inp, tar = inp.to(self.device), tar.to(self.device)
                
                # FORWARD PASS !!!
                # autocast to bfloat16 for faster compute and memory efficiency
                with torch.autocast(device_type=self.device_type, dtype=torch.bfloat16):
                    logits, loss = self.model(inp, tar)

                # loss is scaled to account for gradient accumulation, because the gradients just add
                # on each successive backward() call. Addition of gradients corresponds to SUM in the objective,
                # but we want MEAN instead of a SUM
                loss /= self.grad_accum_steps
                batch_loss += loss.detach()

                if self.ddp:
                    # in the final mini_step, sync and avg all gradients across all processes. used by both forward and backward processes
                    # can use 'no_sync()' context manager alternatively. 
                    self.model.require_backward_grad_sync = (mini_step == self.grad_accum_steps - 1)

                # each process accumulates gradients separately when 'require_backward_grad_sync'=False
                # in the final 'mini_step', 'require_backward_grad_sync' becomes True, therefore 
                # gradients are averaged across all processes and shared among them by loss.backward()
                loss.backward()

            if self.ddp:
                # 'batch_loss' is outside of DDP container, so need to perform 'all_reduce' to 
                # average out 'batch_loss' across all processes of all ranks. 'batch_loss' tensor exists on all GPUs. 
                # 'all_reduce' averages and deposits the result on all the processes
                dist.all_reduce(batch_loss, op=dist.ReduceOp.AVG)

            # once gradients are computed, clip the global l2-norm of the gradient at 1.0
            norm = nn.utils.clip_grad_norm_(self.model.parameters(), 1.0)    # monitor/print 'norm'

            # determine learning rate with decay
            lr = self.estimate_lr(step, warmup_steps, max_steps, max_lr, min_lr)
            # set learning rate for this iteration
            for param_group in self.optimizer.param_groups:
                param_group['lr'] = lr
            
            self.optimizer.step()
            if self.device_type == 'cuda':
                torch.cuda.synchronize()    # wait for the GPU to finish work
            
            dt = (time.time() - t0) * 1000.0    # in ms
            tokens_processed = self.train_loader.B * self.train_loader.T * self.grad_accum_steps * self.ddp_world_size
            tokens_per_sec = tokens_processed / dt

            if self.master_process:
                print(f'step {step:4d} | loss: {batch_loss.item():.6f} | lr: {lr:.2e} | norm: {norm:.4f} | dt: {dt:.4f}ms | tok/sec: {tokens_per_sec:.4f}')
                with open(self.logpath, 'a') as f:
                    f.write(f'{step} train {batch_loss.item():.6f}\n')


    def evaluate_validation(self, step):
        self.model.eval()    # sets model to eval mode
        self.val_loader.reset()
        # evaluate the model on validation set
        with torch.no_grad():
            val_loss_accum = 0.0
            val_steps = 20
            for _ in range(val_steps):
                inp, tar = self.val_loader.next_batch()
                inp, tar = inp.to(self.device), tar.to(self.device)
                with torch.autocast(device_type=self.device_type, dtype=torch.bfloat16):
                    logits, loss = self.model(inp, tar)
                loss /= val_steps
                val_loss_accum += loss.detach()

        if self.ddp:
            dist.all_reduce(val_loss_accum, op=dist.ReduceOp.AVG)
        if self.master_process:
            print(f'Val loss: {val_loss_accum.item():.4f}')
            with open(self.logpath, 'a') as f:
                f.write(f'{step} val {val_loss_accum.item():.4f}\n')

            if step > 0 and (step % 10000 == 0 or self.is_last_step):
                raw_model = self.model.module if self.ddp else self.model
                logdir = os.path.dirname(self.logpath)
                ckpt_path = os.path.join(logdir, f'model_{step:05d}.pt')
                checkpoint = {
                    'model': raw_model.state_dict(),
                    'config': raw_model.config,
                    'step': step,
                    'val_loss': val_loss_accum.item()
                }    # add optimizer.state_dict(), rng_seeds, etc. if resuming training
                torch.save(checkpoint, ckpt_path)


    def evaluate_helloswag(self, step):
        """ 
        Construct a batch of 4 sequences and perform token completion using 
        our model. 
        """
        n_total = 0
        n_correct_norm = 0
        for i, example in enumerate(iterate_examples('val')):
            # only process examples where i % ddp_world_size == ddp_rank
            if i % self.ddp_world_size != self.ddp_rank:
                continue
            # render the example into tokens and labels
            _, tokens, mask, label = render_example(example)    # (4,N), (4,N), (4,N)
            tokens, mask = tokens.to(self.device), mask.to(self.device)
            with torch.no_grad():
                with torch.autocast(device_type=self.device_type, dtype=torch.bfloat16):
                    logits, loss = self.model(tokens)
                pred_norm = get_most_likely_row(tokens, mask, logits)
            n_total += 1
            n_correct_norm += int(pred_norm == label)
        # reduce the stats across all processes
        if self.ddp:
            n_total = torch.tensor(n_total, device=self.device, dtype=torch.long)
            n_correct_norm = torch.tensor(n_correct_norm, device=self.device, dtype=torch.long)
            dist.all_reduce(n_total, op=dist.ReduceOp.SUM)
            dist.all_reduce(n_correct_norm, op=dist.ReduceOp.SUM)
            n_total = n_total.item()
            n_correct_norm = n_correct_norm.item()
        acc_norm = n_correct_norm / n_total
        if self.master_process:
            print(f'HelloSwag accuracy: {n_correct_norm}/{n_total}={acc_norm:.4f}')
            with open(self.logpath, 'a') as f:
                f.write(f'{step} hellaswag {acc_norm:.4f}\n')


    def generate_sequences(self, num_seq=4, max_tokens=32):
        self.model.eval()
        tokens = self.token_encoder.encode("Hello, I am a language model")
        tokens = torch.tensor(tokens, dtype=torch.long)    # (n,)   n : current sequence length
        tokens = tokens.unsqueeze(0).repeat(num_seq, 1)    # (1,n) --> (num_seq, n)
        gen_tokens = tokens.to(self.device)
        # create a different rng generator so as not to impact the global rng state used for training
        sample_rng = torch.Generator(device=self.device)
        # adding 'ddp_rank' in seeding to generate different tokens for different rank processes
        sample_rng.manual_seed(42 + self.ddp_rank)
        # generate new tokens one token at a time until the sequence length becomes 'max_tokens'
        while gen_tokens.shape[-1] <= max_tokens:
            with torch.no_grad():
                with torch.autocast(device_type=self.device_type, dtype=torch.bfloat16):
                    logits, loss = self.model(gen_tokens)    # (num_seq, n, vocab_size)
                logits = logits[:, -1, :]    # (num_seq, vocab_size)
                probs = F.softmax(logits, dim=-1)    # (num_seq, vocab_size)
                # take top-k 50 probs
                topk_probs, topk_indices = torch.topk(probs, 50, dim=-1)    # (num_seq, 50), (num_seq, 50)
                # sample a token from top-50 probabilities
                ix = torch.multinomial(topk_probs, num_samples=1, generator=sample_rng)    # (num_seq, 1)
                next_tok = torch.gather(topk_indices, -1, ix)    # (num_seq, 1)
                gen_tokens = torch.cat([gen_tokens, next_tok], dim=1)
        # decode generated tokens and print generated text
        for i in range(num_seq):
            tokens = gen_tokens[i, :max_tokens].tolist()
            gen_text = self.token_encoder.decode(tokens)
            print(f"> rank {self.ddp_rank} sample {i}: {gen_text}")


    def estimate_lr(self, step, warmup_steps, max_steps, max_lr, min_lr):
        """
        Learning rate scheduler: Cosine-decay learning schedule with warmup
        """
        # 1) linear warmup for 'warmup_iters' steps
        if step < warmup_steps:
            return max_lr * (step+1) / warmup_steps
        # 2) if step > lr_decay_iters, return min lr
        if step > max_steps:
            return min_lr
        # 3) in between, use cosine decay down to min lr
        decay_ratio = (step - warmup_steps) / (max_steps - warmup_steps)
        assert 0 <= decay_ratio <= 1
        coeff = 0.5 * (1.0 + math.cos(math.pi * decay_ratio)) # coeff starts at 1 and goes to 0
        return min_lr + coeff * (max_lr - min_lr)


@dataclass
class GPTConfig:
    context_length: int = 1024    # max context / sequence length
    vocab_size: int = 50257    # number of tokens: 50000 BPE merges + 256 bytes tokens + 1 <endoftext> token
    num_layers: int = 12
    embd_size: int = 768    # embedding dim
    num_heads: int = 12


def get_args():
    import argparse
    parser = argparse.ArgumentParser(description="Hyperparameter Configuration")
    parser.add_argument("--total_batch_size", type=int, default=524288, help="number of tokens processed for each weight update")    # =2^19 tokens/step update, (~0.5M tokens used in openai gpt3 paper)
    parser.add_argument("--mini_batch_size", type=int, default=32, help="setting of mini_batch_size is just a performance optimization. bigger gpu, bigger mini_batch_size")
    parser.add_argument("--context_length", type=int, default=1024)    # max sequence length (can also try 2048)
    parser.add_argument("--num_layers", type=int, default=12)
    parser.add_argument("--embd_size", type=int, default=768)
    parser.add_argument("--num_heads", type=int, default=12)
    parser.add_argument("--max_lr", type=float, default=1e-3)
    parser.add_argument("--min_lr", type=float, default=1e-3 * 0.1)
    parser.add_argument("--warmup_steps", type=int, default=715)
    parser.add_argument("--weight_decay", type=float, default=0.1)
    parser.add_argument("--num_epochs", type=int, default=5)
    parser.add_argument("--steps_per_epoch", type=int, default=19073)    # 10^10 / 2^19 ~ 19073 for 1 epoch on FineWebEdu-sample10BT
    parser.add_argument("--eval_freq", type=int, default=250)
    # parser.add_argument("--use_torch_compile", action='store_true')    # default False
    parser.add_argument("--seed", type=int, default=1337, help="Random seed for reproducibility")
    parser.add_argument("--logdir", type=str, default="./logs/")
    return parser.parse_args()


def main():
    args = get_args()

    # Print the hyperparameters
    print("Hyperparameter Configuration:")
    for key, value in vars(args).items():
        print(f"{key}: {value}")

    # create the logs directory if it doesn't exist
    os.makedirs(args.logdir, exist_ok=True)
    logpath = os.path.join(args.logdir, 'log.txt')
    with open(logpath, 'w') as f:
        pass

    # set up DDP (distributed data parallel)
    # 'torchrun' command sets the env variables RANK, LOCAL_RANK, and WORLD_SIZE
    # RANK and LOCAL_RANK same for (single node, multi-GPU) settings, may differ for (multinode, 
    # multi GPU) settings. 
    ddp = int(os.environ.get('RANK', -1)) != -1    # if this is a ddp run or not
    if ddp:
        # use of ddp requires CUDA
        assert torch.cuda.is_available(), f'use of DDP requires CUDA'
        dist.init_process_group(backend='nccl')
        ddp_rank = int(os.environ['RANK'])
        ddp_local_rank = int(os.environ['LOCAL_RANK'])
        ddp_world_size = int(os.environ['WORLD_SIZE'])
        device = f'cuda:{ddp_local_rank}'
        torch.cuda.set_device(device)
        # master process (arbitrarily set to 0) will do printing, logging, checkpointing, etc.
        master_process = ddp_rank == 0
    else:
        # not using ddp
        ddp_rank = 0
        ddp_local_rank = 0
        ddp_world_size = 1
        master_process = True    # ddp_rank == 0
        device = 'cpu'
        if torch.cuda.is_available():
            device = 'cuda'
        elif hasattr(torch.backends, 'mps') and torch.backends.mps.is_available():
            device = 'mps'    # for apple macbook GPUs
        print(f'using device: {device}')

    device_type = 'cuda' if device.startswith('cuda') else 'cpu'

    # setting seed for reproducibility
    np.random.seed(args.seed)
    torch.manual_seed(args.seed)    # sets seed for random number generation on CPU
    if torch.cuda.is_available():
        torch.cuda.manual_seed(args.seed)    # sets seed for random number generation on GPU
        torch.cuda.manual_seed_all(args.seed)    # sets seed for all GPUs

    assert args.total_batch_size % (args.mini_batch_size * args.context_length * ddp_world_size) == 0, f'ensure total_batch_size divisible by B*T*ddp_world_size'
    grad_accum_steps = args.total_batch_size // (args.mini_batch_size * args.context_length * ddp_world_size)
    if master_process:
        print(f'desired batch size (number of tokens): {args.total_batch_size}')
        print(f'gradient accumulation steps: {grad_accum_steps}')
    print(f'GPU: {ddp_rank}, {ddp_local_rank}')

    train_loader = DataLoaderLite(B=args.mini_batch_size, T=args.context_length, process_rank=ddp_rank, num_processes=ddp_world_size, split='train')
    val_loader = DataLoaderLite(B=args.mini_batch_size, T=args.context_length, process_rank=ddp_rank, num_processes=ddp_world_size, split='val')

    # create GPT model. each ddp process will create its own instance of the model but since the seed is fixed, 
    # they will create same identical model
    gpt_config = GPTConfig(vocab_size=50304,   # 50304 (nice number, lots of power of 2s) used instead of 50257 (bad, odd number)
                           context_length=args.context_length, 
                           num_layers=args.num_layers, 
                           num_heads=args.num_heads, 
                           embd_size=args.embd_size
                           )
    model = GPT(config=gpt_config)
    # model = GPT.from_pretrained('gpt2')    # init from OpenAI GPT-2
    model.to(device)    # move model to device
    if use_torch_compile:
        # use torch compile almost always unless debugging (requires compilation time, but makes training faster)
        # speedup comes from reducing python overhead and GPU read/write
        model = torch.compile(model)

    if ddp:
        # wraps the model in DDP container (forward pass is unchanged, but after backward pass,
        # gradients computed across each processes averaged by DDP using 'AllReduce' and shared across 
        # all processes so that each process has same gradients)
        model = DDP(model, device_ids=[ddp_local_rank])

    raw_model = model.module if ddp else model
    optimizer = raw_model.configure_optimizers(weight_decay=args.weight_decay, lr=args.max_lr, device_type=device_type, master_process=master_process)
    token_encoder = tiktoken.get_encoding('gpt2')

    start_time = time.time()
    # init the trainer object
    trainer = Trainer(model, optimizer, train_loader, val_loader, token_encoder, args.eval_freq, grad_accum_steps, 
                      ddp, ddp_rank, ddp_world_size, device, logpath)

    max_steps = args.steps_per_epoch * args.num_epochs
    trainer.train(max_steps, args.warmup_steps, args.max_lr, args.min_lr)

    dt = (time.time() - start_time) / (60*60)
    print(f"Total training time: {dt:.4f}hr")

    if ddp:
        dist.destroy_process_group()


if __name__ == "__main__":
    main()