from transformers import T5ForConditionalGeneration, T5Tokenizer from cog import BasePredictor, Input class Predictor(BasePredictor): def setup(self): """Load the model and tokenizer into memory to make running multiple predictions efficient""" self.model = T5ForConditionalGeneration.from_pretrained("aaurelions/t5-grammar-corrector") self.tokenizer = T5Tokenizer.from_pretrained("aaurelions/t5-grammar-corrector") def predict(self, text: str = Input(description="Text to correct")) -> str: """Run a single prediction on the model""" input_text = "fix grammar: " + text input_ids = self.tokenizer(input_text, return_tensors="pt").input_ids output_ids = self.model.generate(input_ids, max_length=128) corrected_text = self.tokenizer.decode(output_ids[0], skip_special_tokens=True) return corrected_text