--- tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy - f1 - precision - recall model-index: - name: msi-resnet-18 results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: validation args: default metrics: - name: Accuracy type: accuracy value: 0.6217151244059268 - name: F1 type: f1 value: 0.5152478617168957 - name: Precision type: precision value: 0.5801734570391287 - name: Recall type: recall value: 0.4633910592025775 --- # msi-resnet-18 This model was trained from scratch on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.6730 - Accuracy: 0.6217 - F1: 0.5152 - Precision: 0.5802 - Recall: 0.4634 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-06 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|:------:| | 0.5705 | 1.0 | 2015 | 0.6879 | 0.5897 | 0.4460 | 0.5384 | 0.3807 | | 0.5309 | 2.0 | 4031 | 0.6788 | 0.6091 | 0.4859 | 0.5657 | 0.4258 | | 0.5263 | 3.0 | 6047 | 0.7020 | 0.6036 | 0.4322 | 0.5709 | 0.3477 | | 0.496 | 4.0 | 8060 | 0.6730 | 0.6217 | 0.5152 | 0.5802 | 0.4634 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0