File size: 1,939 Bytes
c910ba7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
---

library_name: transformers
license: apache-2.0
base_model: distilbert-base-uncased
tags:
- generated_from_trainer
metrics:
- accuracy
- f1
- precision
model-index:
- name: distilbert-base-uncased_emotion_ft_1201
  results: []
---


<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# distilbert-base-uncased_emotion_ft_1201



This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on an unknown dataset.

It achieves the following results on the evaluation set:

- Loss: 0.1468

- Accuracy: 0.938

- F1: 0.9379

- Precision: 0.9152



## Model description



More information needed



## Intended uses & limitations



More information needed



## Training and evaluation data



More information needed



## Training procedure



### Training hyperparameters



The following hyperparameters were used during training:

- learning_rate: 2e-05
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 4



### Training results



| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1     | Precision |

|:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:---------:|

| 0.7662        | 1.0   | 250  | 0.2631          | 0.9175   | 0.9177 | 0.8872    |

| 0.2059        | 2.0   | 500  | 0.1747          | 0.9335   | 0.9334 | 0.9098    |

| 0.137         | 3.0   | 750  | 0.1507          | 0.9345   | 0.9345 | 0.9064    |

| 0.1071        | 4.0   | 1000 | 0.1468          | 0.938    | 0.9379 | 0.9152    |





### Framework versions



- Transformers 4.46.3

- Pytorch 2.5.1+cu118

- Datasets 3.1.0

- Tokenizers 0.20.3