Commit
·
2a41a22
1
Parent(s):
c49f4c7
For users to load in one key.
Browse files- BiRefNet_codes +0 -1
- BiRefNet_github/LICENSE +21 -0
- BiRefNet_github/README.md +234 -0
- BiRefNet_github/config.py +156 -0
- BiRefNet_github/dataset.py +112 -0
- BiRefNet_github/eval_existingOnes.py +139 -0
- BiRefNet_github/evaluation/evaluate.py +60 -0
- BiRefNet_github/evaluation/metrics.py +612 -0
- BiRefNet_github/evaluation/valid.py +9 -0
- BiRefNet_github/gen_best_ep.py +85 -0
- BiRefNet_github/inference.py +105 -0
- BiRefNet_github/loss.py +274 -0
- BiRefNet_github/make_a_copy.sh +18 -0
- BiRefNet_github/models/backbones/build_backbone.py +44 -0
- BiRefNet_github/models/backbones/pvt_v2.py +435 -0
- BiRefNet_github/models/backbones/swin_v1.py +627 -0
- BiRefNet_github/models/birefnet.py +287 -0
- BiRefNet_github/models/modules/aspp.py +119 -0
- BiRefNet_github/models/modules/attentions.py +93 -0
- BiRefNet_github/models/modules/decoder_blocks.py +101 -0
- BiRefNet_github/models/modules/deform_conv.py +66 -0
- BiRefNet_github/models/modules/ing.py +29 -0
- BiRefNet_github/models/modules/lateral_blocks.py +21 -0
- BiRefNet_github/models/modules/mlp.py +118 -0
- BiRefNet_github/models/modules/prompt_encoder.py +222 -0
- BiRefNet_github/models/modules/utils.py +54 -0
- BiRefNet_github/models/refinement/refiner.py +253 -0
- BiRefNet_github/models/refinement/stem_layer.py +45 -0
- BiRefNet_github/preproc.py +85 -0
- BiRefNet_github/requirements.txt +15 -0
- BiRefNet_github/rm_cache.sh +20 -0
- BiRefNet_github/sub.sh +19 -0
- BiRefNet_github/test.sh +28 -0
- BiRefNet_github/train.py +377 -0
- BiRefNet_github/train.sh +41 -0
- BiRefNet_github/train_test.sh +11 -0
- BiRefNet_github/utils.py +97 -0
- BiRefNet_github/waiting4eval.py +141 -0
BiRefNet_codes
DELETED
@@ -1 +0,0 @@
|
|
1 |
-
Subproject commit 6921f57da442c87e2020bf2aea2cee85527be482
|
|
|
|
BiRefNet_github/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2024 ZhengPeng
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
BiRefNet_github/README.md
ADDED
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# <p align=center>`Bilateral Reference for High-Resolution Dichotomous Image Segmentation`</p>
|
2 |
+
|
3 |
+
| *DIS-Sample_1* | *DIS-Sample_2* |
|
4 |
+
| :------------------------------: | :-------------------------------: |
|
5 |
+
| <img src="https://drive.google.com/thumbnail?id=1ItXaA26iYnE8XQ_GgNLy71MOWePoS2-g&sz=w400" /> | <img src="https://drive.google.com/thumbnail?id=1Z-esCujQF_uEa_YJjkibc3NUrW4aR_d4&sz=w400" /> |
|
6 |
+
|
7 |
+
This repo is the official implementation of "[**Bilateral Reference for High-Resolution Dichotomous Image Segmentation**](https://arxiv.org/pdf/2401.03407.pdf)" (___arXiv 2024___).
|
8 |
+
|
9 |
+
> **Authors:**
|
10 |
+
> [Peng Zheng](https://scholar.google.com/citations?user=TZRzWOsAAAAJ),
|
11 |
+
> [Dehong Gao](https://scholar.google.com/citations?user=0uPb8MMAAAAJ),
|
12 |
+
> [Deng-Ping Fan](https://scholar.google.com/citations?user=kakwJ5QAAAAJ),
|
13 |
+
> [Li Liu](https://scholar.google.com/citations?user=9cMQrVsAAAAJ),
|
14 |
+
> [Jorma Laaksonen](https://scholar.google.com/citations?user=qQP6WXIAAAAJ),
|
15 |
+
> [Wanli Ouyang](https://scholar.google.com/citations?user=pw_0Z_UAAAAJ), &
|
16 |
+
> [Nicu Sebe](https://scholar.google.com/citations?user=stFCYOAAAAAJ).
|
17 |
+
|
18 |
+
[[**arXiv**](https://arxiv.org/abs/2401.03407)] [[**code**](https://github.com/ZhengPeng7/BiRefNet)] [[**stuff**](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM)] [[**中文版**](https://drive.google.com/file/d/1aBnJ_R9lbnC2dm8dqD0-pzP2Cu-U1Xpt/view?usp=drive_link)]
|
19 |
+
|
20 |
+
Our BiRefNet has achieved SOTA on many similar HR tasks:
|
21 |
+
|
22 |
+
**DIS**: [](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te1?p=bilateral-reference-for-high-resolution) [](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te2?p=bilateral-reference-for-high-resolution) [](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te3?p=bilateral-reference-for-high-resolution) [](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-te4?p=bilateral-reference-for-high-resolution) [](https://paperswithcode.com/sota/dichotomous-image-segmentation-on-dis-vd?p=bilateral-reference-for-high-resolution)
|
23 |
+
|
24 |
+
<details><summary>Figure of Comparison on Papers with Codes (by the time of this work):</summary><p>
|
25 |
+
<img src="https://drive.google.com/thumbnail?id=1DLt6CFXdT1QSWDj_6jRkyZINXZ4vmyRp&sz=w1620" />
|
26 |
+
<img src="https://drive.google.com/thumbnail?id=1gn5GyKFlJbMIkre1JyEdHDSYcrFmcLD0&sz=w1620" />
|
27 |
+
<img src="https://drive.google.com/thumbnail?id=16CVYYOtafEeZhHqv0am2Daku1n_exMP6&sz=w1620" />
|
28 |
+
<img src="https://drive.google.com/thumbnail?id=10K45xwPXmaTG4Ex-29ss9payA9yBnyLn&sz=w1620" />
|
29 |
+
<img src="https://drive.google.com/thumbnail?id=16EuyqKFJOqwMmagvfnbC9hUurL9pYLLB&sz=w1620" />
|
30 |
+
</details>
|
31 |
+
<br />
|
32 |
+
|
33 |
+
**COD**:[](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-cod?p=bilateral-reference-for-high-resolution) [](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-nc4k?p=bilateral-reference-for-high-resolution) [](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-camo?p=bilateral-reference-for-high-resolution) [](https://paperswithcode.com/sota/camouflaged-object-segmentation-on-chameleon?p=bilateral-reference-for-high-resolution)
|
34 |
+
|
35 |
+
<details><summary>Figure of Comparison on Papers with Codes (by the time of this work):</summary><p>
|
36 |
+
<img src="https://drive.google.com/thumbnail?id=1DLt6CFXdT1QSWDj_6jRkyZINXZ4vmyRp&sz=w1620" />
|
37 |
+
<img src="https://drive.google.com/thumbnail?id=1gn5GyKFlJbMIkre1JyEdHDSYcrFmcLD0&sz=w1620" />
|
38 |
+
<img src="https://drive.google.com/thumbnail?id=16CVYYOtafEeZhHqv0am2Daku1n_exMP6&sz=w1620" />
|
39 |
+
</details>
|
40 |
+
<br />
|
41 |
+
|
42 |
+
**HRSOD**: [](https://paperswithcode.com/sota/rgb-salient-object-detection-on-davis-s?p=bilateral-reference-for-high-resolution) [](https://paperswithcode.com/sota/rgb-salient-object-detection-on-hrsod?p=bilateral-reference-for-high-resolution) [](https://paperswithcode.com/sota/rgb-salient-object-detection-on-uhrsd?p=bilateral-reference-for-high-resolution) [](https://paperswithcode.com/sota/salient-object-detection-on-duts-te?p=bilateral-reference-for-high-resolution) [](https://paperswithcode.com/sota/salient-object-detection-on-dut-omron?p=bilateral-reference-for-high-resolution)
|
43 |
+
|
44 |
+
<details><summary>Figure of Comparison on Papers with Codes (by the time of this work):</summary><p>
|
45 |
+
<img src="https://drive.google.com/thumbnail?id=1hNfQtlTAHT4-AVbk_47852zyRp1NOFLs&sz=w1620" />
|
46 |
+
<img src="https://drive.google.com/thumbnail?id=1bcVldUAxYkMI3OMTyaP_jNuOugDfYj-d&sz=w1620" />
|
47 |
+
<img src="https://drive.google.com/thumbnail?id=1p1zgyVz27cGEqQMtOKzm_6zoYK3Sw_Zk&sz=w1620" />
|
48 |
+
<img src="https://drive.google.com/thumbnail?id=1TubAvcoEbH_mHu3I-AxflnB71nkf35jJ&sz=w1620" />
|
49 |
+
<img src="https://drive.google.com/thumbnail?id=1A3V9HjVtcMQdnGPwuy-DBVhwKuo0q2lT&sz=w1620" />
|
50 |
+
</details>
|
51 |
+
<br />
|
52 |
+
|
53 |
+
#### Try our online demos for inference:
|
54 |
+
|
55 |
+
+ **Inference and evaluation** of your given weights: [](https://colab.research.google.com/drive/1MaEiBfJ4xIaZZn0DqKrhydHB8X97hNXl#scrollTo=DJ4meUYjia6S)
|
56 |
+
+ **Online Inference with GUI** with adjustable resolutions: [](https://huggingface.co/spaces/ZhengPeng7/BiRefNet_demo)
|
57 |
+
+ Online **Single Image Inference** on Colab: [](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link)
|
58 |
+
<img src="https://drive.google.com/thumbnail?id=12XmDhKtO1o2fEvBu4OE4ULVB2BK0ecWi&sz=w1620" />
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
## Model Zoo
|
63 |
+
|
64 |
+
> For more general use of our BiRefNet, I managed to extend the original adademic one to more general ones for better application in real life.
|
65 |
+
>
|
66 |
+
> Datasets and datasets are suggested to download from official pages. But you can also download the packaged ones: [DIS](https://drive.google.com/drive/folders/1hZW6tAGPJwo9mPS7qGGGdpxuvuXiyoMJ?usp=drive_link), [HRSOD](https://drive.google.com/drive/folders/18_hAE3QM4cwAzEAKXuSNtKjmgFXTQXZN?usp=drive_link), [COD](https://drive.google.com/drive/folders/1EyHmKWsXfaCR9O0BiZEc3roZbRcs4ECO?usp=drive_link), [Backbones](https://drive.google.com/drive/folders/1cmce_emsS8A5ha5XT2c_CZiJzlLM81ms?usp=drive_link).
|
67 |
+
>
|
68 |
+
> Find performances (almost all metrics) of all models in the `exp-TASK_SETTINGS` folders in [[**stuff**](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM)].
|
69 |
+
|
70 |
+
|
71 |
+
|
72 |
+
<details><summary>Models in the original paper, for <b>comparison on benchmarks</b>:</summary><p>
|
73 |
+
|
74 |
+
| Task | Training Sets | Backbone | Download |
|
75 |
+
| :---: | :-------------------------: | :-----------: | :----------------------------------------------------------: |
|
76 |
+
| DIS | DIS5K-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1J90LucvDQaS3R_-9E7QUh1mgJ8eQvccb/view?usp=drive_link) |
|
77 |
+
| COD | COD10K-TR, CAMO-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1tM5M72k7a8aKF-dYy-QXaqvfEhbFaWkC/view?usp=drive_link) |
|
78 |
+
| HRSOD | DUTS-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1f7L0Pb1Y3RkOMbqLCW_zO31dik9AiUFa/view?usp=drive_link) |
|
79 |
+
| HRSOD | HRSOD-TR | swin_v1_large | google-drive |
|
80 |
+
| HRSOD | UHRSD-TR | swin_v1_large | google-drive |
|
81 |
+
| HRSOD | DUTS-TR, HRSOD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1WJooyTkhoDLllaqwbpur_9Hle0XTHEs_/view?usp=drive_link) |
|
82 |
+
| HRSOD | DUTS-TR, UHRSD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1Pu1mv3ORobJatIuUoEuZaWDl2ylP3Gw7/view?usp=drive_link) |
|
83 |
+
| HRSOD | HRSOD-TR, UHRSD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/1xEh7fsgWGaS5c3IffMswasv0_u-aVM9E/view?usp=drive_link) |
|
84 |
+
| HRSOD | DUTS-TR, HRSOD-TR, UHRSD-TR | swin_v1_large | [google-drive](https://drive.google.com/file/d/13FaxyyOwyCddfZn2vZo1xG1KNZ3cZ-6B/view?usp=drive_link) |
|
85 |
+
|
86 |
+
</details>
|
87 |
+
|
88 |
+
|
89 |
+
|
90 |
+
<details><summary>Models trained with customed data (massive, portrait), for <b>general use in practical application</b>:</summary>
|
91 |
+
|
92 |
+
| Task | Training Sets | Backbone | Test Set | Metric (S, wF[, HCE]) | Download |
|
93 |
+
| :-----------------------: | :----------------------------------------------------------: | :-----------: | :-------: | :-------------------: | :----------------------------------------------------------: |
|
94 |
+
| **general use** | DIS5K-TR,DIS-TEs, DUTS-TR_TE,HRSOD-TR_TE,UHRSD-TR_TE, HRS10K-TR_TE | swin_v1_large | DIS-VD | 0.889, 0.840, 1152 | [google-drive](https://drive.google.com/file/d/1KRVE-U3OHrUuuFPY4FFdE4eYBeHJSA0H/view?usp=drive_link) |
|
95 |
+
| **general use** | DIS5K-TR,DIS-TEs, DUTS-TR_TE,HRSOD-TR_TE,UHRSD-TR_TE, HRS10K-TR_TE | swin_v1_tiny | DIS-VD | 0.867, 0.809, 1182 | [Google-drive](https://drive.google.com/file/d/16gDZISjNp7rKi5vsJm6_fbYF8ZBK8AoF/view?usp=drive_link) |
|
96 |
+
| **general use** | DIS5K-TR, DIS-TEs | swin_v1_large | DIS-VD | 0.907, 0.865, 1059 | [google-drive](https://drive.google.com/file/d/1P6NJzG3Jf1sl7js2q1CPC3yqvBn_O8UJ/view?usp=drive_link) |
|
97 |
+
| **portrait segmentation** | P3M-10k | swin_v1_large | P3M-500-P | 0.982, 0.990 | [google-drive](https://drive.google.com/file/d/1vrjPoOGj05iSxb4MMeznX5k67VlyfZX5/view?usp=drive_link) |
|
98 |
+
|
99 |
+
</details>
|
100 |
+
|
101 |
+
|
102 |
+
|
103 |
+
<details><summary>Segmentation with box <b>guidance</b>:</summary>
|
104 |
+
|
105 |
+
*In progress...*
|
106 |
+
|
107 |
+
</details>
|
108 |
+
|
109 |
+
|
110 |
+
|
111 |
+
<details><summary>Model <b>efficiency</b>:</summary><p>
|
112 |
+
|
113 |
+
> Screenshot from the original paper. All tests are conducted on a single A100 GPU.
|
114 |
+
|
115 |
+
<img src="https://drive.google.com/thumbnail?id=1mTfSD_qt-rFO1t8DRQcyIa5cgWLf1w2-&sz=h300" /> <img src="https://drive.google.com/thumbnail?id=1F_OURIWILVe4u1rSz-aqt6ur__bAef25&sz=h300" />
|
116 |
+
|
117 |
+
</details>
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
## Third-Party Creations
|
122 |
+
|
123 |
+
> Concerning edge devices with less computing power, we provide a lightweight version with `swin_v1_tiny` as the backbone, which is x4+ faster and x5+ smaller. The details can be found in [this issue](https://github.com/ZhengPeng7/BiRefNet/issues/11#issuecomment-2041033576) and links there.
|
124 |
+
|
125 |
+
We found there've been some 3rd party applications based on our BiRefNet. Many thanks for their contribution to the community!
|
126 |
+
Choose the one you like to try with clicks instead of codes:
|
127 |
+
1. **Applications**:
|
128 |
+
+ Thanks [**fal.ai/birefnet**](https://fal.ai/models/birefnet): this project on `fal.ai` encapsulates BiRefNet **online** with more useful options in **UI** and **API** to call the model.
|
129 |
+
<p align="center"><img src="https://drive.google.com/thumbnail?id=1rNk81YV_Pzb2GykrzfGvX6T7KBXR0wrA&sz=w1620" /></p>
|
130 |
+
|
131 |
+
+ Thanks [**ZHO-ZHO-ZHO/ComfyUI-BiRefNet-ZHO**](https://github.com/ZHO-ZHO-ZHO/ComfyUI-BiRefNet-ZHO): this project further improves the **UI** for BiRefNet in ComfyUI, especially for **video data**.
|
132 |
+
<p align="center"><img src="https://drive.google.com/thumbnail?id=1GOqEreyS7ENzTPN0RqxEjaA76RpMlkYM&sz=w1620" /></p>
|
133 |
+
|
134 |
+
<https://github.com/ZhengPeng7/BiRefNet/assets/25921713/3a1c7ab2-9847-4dac-8935-43a2d3cd2671>
|
135 |
+
|
136 |
+
+ Thanks [**viperyl/ComfyUI-BiRefNet**](https://github.com/viperyl/ComfyUI-BiRefNet): this project packs BiRefNet as **ComfyUI nodes**, and makes this SOTA model easier use for everyone.
|
137 |
+
<p align="center"><img src="https://drive.google.com/thumbnail?id=1KfxCQUUa2y9T-aysEaeVVjCUt3Z0zSkL&sz=w1620" /></p>
|
138 |
+
|
139 |
+
+ Thanks [**Rishabh**](https://github.com/rishabh063) for offerring a demo for the [easier single image inference on colab](https://colab.research.google.com/drive/14Dqg7oeBkFEtchaHLNpig2BcdkZEogba?usp=drive_link).
|
140 |
+
|
141 |
+
2. **More Visual Comparisons**
|
142 |
+
+ Thanks [**twitter.com/ZHOZHO672070**](https://twitter.com/ZHOZHO672070) for the comparison with more background-removal methods in images:
|
143 |
+
|
144 |
+
<img src="https://drive.google.com/thumbnail?id=1nvVIFt_Ezs-crPSQxUDqkUBz598fTe63&sz=w1620" />
|
145 |
+
|
146 |
+
+ Thanks [**twitter.com/toyxyz3**](https://twitter.com/toyxyz3) for the comparison with more background-removal methods in videos:
|
147 |
+
|
148 |
+
<https://github.com/ZhengPeng7/BiRefNet/assets/25921713/40136198-01cc-4106-81f9-81c985f02e31>
|
149 |
+
|
150 |
+
<https://github.com/ZhengPeng7/BiRefNet/assets/25921713/1a32860c-0893-49dd-b557-c2e35a83c160>
|
151 |
+
|
152 |
+
|
153 |
+
## Usage
|
154 |
+
|
155 |
+
#### Environment Setup
|
156 |
+
|
157 |
+
```shell
|
158 |
+
# PyTorch==2.0.1 is used for faster training with compilation.
|
159 |
+
conda create -n dis python=3.9 -y && conda activate dis
|
160 |
+
pip install -r requirements.txt
|
161 |
+
```
|
162 |
+
|
163 |
+
#### Dataset Preparation
|
164 |
+
|
165 |
+
Download combined training / test sets I have organized well from: [DIS](https://drive.google.com/drive/folders/1hZW6tAGPJwo9mPS7qGGGdpxuvuXiyoMJ)--[COD](https://drive.google.com/drive/folders/1EyHmKWsXfaCR9O0BiZEc3roZbRcs4ECO)--[HRSOD](https://drive.google.com/drive/folders/18_hAE3QM4cwAzEAKXuSNtKjmgFXTQXZN) or the single official ones in the `single_ones` folder, or their official pages. You can also find the same ones on my **BaiduDisk**: [DIS](https://pan.baidu.com/s/1O_pQIGAE4DKqL93xOxHpxw?pwd=PSWD)--[COD](https://pan.baidu.com/s/1RnxAzaHSTGBC1N6r_RfeqQ?pwd=PSWD)--[HRSOD](https://pan.baidu.com/s/1_Del53_0lBuG0DKJJAk4UA?pwd=PSWD).
|
166 |
+
|
167 |
+
#### Weights Preparation
|
168 |
+
|
169 |
+
Download backbone weights from [my google-drive folder](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM) or their official pages.
|
170 |
+
|
171 |
+
#### Run
|
172 |
+
|
173 |
+
```shell
|
174 |
+
# Train & Test & Evaluation
|
175 |
+
./train_test.sh RUN_NAME GPU_NUMBERS_FOR_TRAINING GPU_NUMBERS_FOR_TEST
|
176 |
+
# See train.sh / test.sh for only training / test-evaluation.
|
177 |
+
# After the evluation, run `gen_best_ep.py` to select the best ckpt from a specific metric (you choose it from Sm, wFm, HCE (DIS only)).
|
178 |
+
```
|
179 |
+
|
180 |
+
#### Well-trained weights:
|
181 |
+
|
182 |
+
Download the `BiRefNet-{TASK}-{EPOCH}.pth` from [[**stuff**](https://drive.google.com/drive/folders/1s2Xe0cjq-2ctnJBR24563yMSCOu4CcxM)]. Info of the corresponding (predicted\_maps/performance/training\_log) weights can be also found in folders like `exp-BiRefNet-{TASK_SETTINGS}` in the same directory.
|
183 |
+
|
184 |
+
You can also download the weights from the release of this repo.
|
185 |
+
|
186 |
+
The results might be a bit different from those in the original paper, you can see them in the `eval_results-BiRefNet-{TASK_SETTINGS}` folder in each `exp-xx`, we will update them in the following days. Due to the very high cost I used (A100-80G x 8) which many people cannot afford to (including myself....), I re-trained BiRefNet on a single A100-40G only and achieve the performance on the same level (even better). It means you can directly train the model on a single GPU with 36.5G+ memory. BTW, 5.5G GPU memory is needed for inference in 1024x1024. (I personally paid a lot for renting an A100-40G to re-train BiRefNet on the three tasks... T_T. Hope it can help you.)
|
187 |
+
|
188 |
+
But if you have more and more powerful GPUs, you can set GPU IDs and increase the batch size in `config.py` to accelerate the training. We have made all this kind of things adaptive in scripts to seamlessly switch between single-card training and multi-card training. Enjoy it :)
|
189 |
+
|
190 |
+
#### Some of my messages:
|
191 |
+
|
192 |
+
This project was originally built for DIS only. But after the updates one by one, I made it larger and larger with many functions embedded together. Finally, you can **use it for any binary image segmentation tasks**, such as DIS/COD/SOD, medical image segmentation, anomaly segmentation, etc. You can eaily open/close below things (usually in `config.py`):
|
193 |
+
+ Multi-GPU training: open/close with one variable.
|
194 |
+
+ Backbone choices: Swin_v1, PVT_v2, ConvNets, ...
|
195 |
+
+ Weighted losses: BCE, IoU, SSIM, MAE, Reg, ...
|
196 |
+
+ Adversarial loss for binary segmentation (proposed in my previous work [MCCL](https://arxiv.org/pdf/2302.14485.pdf)).
|
197 |
+
+ Training tricks: multi-scale supervision, freezing backbone, multi-scale input...
|
198 |
+
+ Data collator: loading all in memory, smooth combination of different datasets for combined training and test.
|
199 |
+
+ ...
|
200 |
+
I really hope you enjoy this project and use it in more works to achieve new SOTAs.
|
201 |
+
|
202 |
+
|
203 |
+
### Quantitative Results
|
204 |
+
|
205 |
+
<p align="center"><img src="https://drive.google.com/thumbnail?id=184e84BwLuNu1FytSAQ2EnANZ0RFHKPip&sz=w1620" /></p>
|
206 |
+
|
207 |
+
<p align="center"><img src="https://drive.google.com/thumbnail?id=1W0mi0ZiYbqsaGuohNXU8Gh7Zj4M3neFg&sz=w1620" /></p>
|
208 |
+
|
209 |
+
|
210 |
+
|
211 |
+
### Qualitative Results
|
212 |
+
|
213 |
+
<p align="center"><img src="https://drive.google.com/thumbnail?id=1TYZF8pVZc2V0V6g3ik4iAr9iKvJ8BNrf&sz=w1620" /></p>
|
214 |
+
|
215 |
+
<p align="center"><img src="https://drive.google.com/thumbnail?id=1ZGHC32CAdT9cwRloPzOCKWCrVQZvUAlJ&sz=w1620" /></p>
|
216 |
+
|
217 |
+
|
218 |
+
|
219 |
+
### Citation
|
220 |
+
|
221 |
+
```
|
222 |
+
@article{zheng2024birefnet,
|
223 |
+
title={Bilateral Reference for High-Resolution Dichotomous Image Segmentation},
|
224 |
+
author={Zheng, Peng and Gao, Dehong and Fan, Deng-Ping and Liu, Li and Laaksonen, Jorma and Ouyang, Wanli and Sebe, Nicu},
|
225 |
+
journal={arXiv},
|
226 |
+
year={2024}
|
227 |
+
}
|
228 |
+
```
|
229 |
+
|
230 |
+
|
231 |
+
|
232 |
+
## Contact
|
233 |
+
|
234 |
+
Any question, discussion or even complaint, feel free to leave issues here or send me e-mails ([email protected]).
|
BiRefNet_github/config.py
ADDED
@@ -0,0 +1,156 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import math
|
3 |
+
|
4 |
+
|
5 |
+
class Config():
|
6 |
+
def __init__(self) -> None:
|
7 |
+
# PATH settings
|
8 |
+
self.sys_home_dir = os.environ['HOME'] # Make up your file system as: SYS_HOME_DIR/codes/dis/BiRefNet, SYS_HOME_DIR/datasets/dis/xx, SYS_HOME_DIR/weights/xx
|
9 |
+
|
10 |
+
# TASK settings
|
11 |
+
self.task = ['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'][0]
|
12 |
+
self.training_set = {
|
13 |
+
'DIS5K': ['DIS-TR', 'DIS-TR+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'][0],
|
14 |
+
'COD': 'TR-COD10K+TR-CAMO',
|
15 |
+
'HRSOD': ['TR-DUTS', 'TR-HRSOD', 'TR-UHRSD', 'TR-DUTS+TR-HRSOD', 'TR-DUTS+TR-UHRSD', 'TR-HRSOD+TR-UHRSD', 'TR-DUTS+TR-HRSOD+TR-UHRSD'][5],
|
16 |
+
'DIS5K+HRSOD+HRS10K': 'DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4+DIS-TR+TE-HRS10K+TE-HRSOD+TE-UHRSD+TR-HRS10K+TR-HRSOD+TR-UHRSD', # leave DIS-VD for evaluation.
|
17 |
+
'P3M-10k': 'TR-P3M-10k',
|
18 |
+
}[self.task]
|
19 |
+
self.prompt4loc = ['dense', 'sparse'][0]
|
20 |
+
|
21 |
+
# Faster-Training settings
|
22 |
+
self.load_all = True
|
23 |
+
self.compile = True # 1. Trigger CPU memory leak in some extend, which is an inherent problem of PyTorch.
|
24 |
+
# Machines with > 70GB CPU memory can run the whole training on DIS5K with default setting.
|
25 |
+
# 2. Higher PyTorch version may fix it: https://github.com/pytorch/pytorch/issues/119607.
|
26 |
+
# 3. But compile in Pytorch > 2.0.1 seems to bring no acceleration for training.
|
27 |
+
self.precisionHigh = True
|
28 |
+
|
29 |
+
# MODEL settings
|
30 |
+
self.ms_supervision = True
|
31 |
+
self.out_ref = self.ms_supervision and True
|
32 |
+
self.dec_ipt = True
|
33 |
+
self.dec_ipt_split = True
|
34 |
+
self.cxt_num = [0, 3][1] # multi-scale skip connections from encoder
|
35 |
+
self.mul_scl_ipt = ['', 'add', 'cat'][2]
|
36 |
+
self.dec_att = ['', 'ASPP', 'ASPPDeformable'][2]
|
37 |
+
self.squeeze_block = ['', 'BasicDecBlk_x1', 'ResBlk_x4', 'ASPP_x3', 'ASPPDeformable_x3'][1]
|
38 |
+
self.dec_blk = ['BasicDecBlk', 'ResBlk', 'HierarAttDecBlk'][0]
|
39 |
+
|
40 |
+
# TRAINING settings
|
41 |
+
self.batch_size = 4
|
42 |
+
self.IoU_finetune_last_epochs = [
|
43 |
+
0,
|
44 |
+
{
|
45 |
+
'DIS5K': -50,
|
46 |
+
'COD': -20,
|
47 |
+
'HRSOD': -20,
|
48 |
+
'DIS5K+HRSOD+HRS10K': -20,
|
49 |
+
'P3M-10k': -20,
|
50 |
+
}[self.task]
|
51 |
+
][1] # choose 0 to skip
|
52 |
+
self.lr = (1e-4 if 'DIS5K' in self.task else 1e-5) * math.sqrt(self.batch_size / 4) # DIS needs high lr to converge faster. Adapt the lr linearly
|
53 |
+
self.size = 1024
|
54 |
+
self.num_workers = max(4, self.batch_size) # will be decrease to min(it, batch_size) at the initialization of the data_loader
|
55 |
+
|
56 |
+
# Backbone settings
|
57 |
+
self.bb = [
|
58 |
+
'vgg16', 'vgg16bn', 'resnet50', # 0, 1, 2
|
59 |
+
'swin_v1_t', 'swin_v1_s', # 3, 4
|
60 |
+
'swin_v1_b', 'swin_v1_l', # 5-bs9, 6-bs4
|
61 |
+
'pvt_v2_b0', 'pvt_v2_b1', # 7, 8
|
62 |
+
'pvt_v2_b2', 'pvt_v2_b5', # 9-bs10, 10-bs5
|
63 |
+
][6]
|
64 |
+
self.lateral_channels_in_collection = {
|
65 |
+
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
66 |
+
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
67 |
+
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
68 |
+
'swin_v1_t': [768, 384, 192, 96], 'swin_v1_s': [768, 384, 192, 96],
|
69 |
+
'pvt_v2_b0': [256, 160, 64, 32], 'pvt_v2_b1': [512, 320, 128, 64],
|
70 |
+
}[self.bb]
|
71 |
+
if self.mul_scl_ipt == 'cat':
|
72 |
+
self.lateral_channels_in_collection = [channel * 2 for channel in self.lateral_channels_in_collection]
|
73 |
+
self.cxt = self.lateral_channels_in_collection[1:][::-1][-self.cxt_num:] if self.cxt_num else []
|
74 |
+
|
75 |
+
# MODEL settings - inactive
|
76 |
+
self.lat_blk = ['BasicLatBlk'][0]
|
77 |
+
self.dec_channels_inter = ['fixed', 'adap'][0]
|
78 |
+
self.refine = ['', 'itself', 'RefUNet', 'Refiner', 'RefinerPVTInChannels4'][0]
|
79 |
+
self.progressive_ref = self.refine and True
|
80 |
+
self.ender = self.progressive_ref and False
|
81 |
+
self.scale = self.progressive_ref and 2
|
82 |
+
self.auxiliary_classification = False # Only for DIS5K, where class labels are saved in `dataset.py`.
|
83 |
+
self.refine_iteration = 1
|
84 |
+
self.freeze_bb = False
|
85 |
+
self.model = [
|
86 |
+
'BiRefNet',
|
87 |
+
][0]
|
88 |
+
if self.dec_blk == 'HierarAttDecBlk':
|
89 |
+
self.batch_size = 2 ** [0, 1, 2, 3, 4][2]
|
90 |
+
|
91 |
+
# TRAINING settings - inactive
|
92 |
+
self.preproc_methods = ['flip', 'enhance', 'rotate', 'pepper', 'crop'][:4]
|
93 |
+
self.optimizer = ['Adam', 'AdamW'][1]
|
94 |
+
self.lr_decay_epochs = [1e5] # Set to negative N to decay the lr in the last N-th epoch.
|
95 |
+
self.lr_decay_rate = 0.5
|
96 |
+
# Loss
|
97 |
+
self.lambdas_pix_last = {
|
98 |
+
# not 0 means opening this loss
|
99 |
+
# original rate -- 1 : 30 : 1.5 : 0.2, bce x 30
|
100 |
+
'bce': 30 * 1, # high performance
|
101 |
+
'iou': 0.5 * 1, # 0 / 255
|
102 |
+
'iou_patch': 0.5 * 0, # 0 / 255, win_size = (64, 64)
|
103 |
+
'mse': 150 * 0, # can smooth the saliency map
|
104 |
+
'triplet': 3 * 0,
|
105 |
+
'reg': 100 * 0,
|
106 |
+
'ssim': 10 * 1, # help contours,
|
107 |
+
'cnt': 5 * 0, # help contours
|
108 |
+
'structure': 5 * 0, # structure loss from codes of MVANet. A little improvement on DIS-TE[1,2,3], a bit more decrease on DIS-TE4.
|
109 |
+
}
|
110 |
+
self.lambdas_cls = {
|
111 |
+
'ce': 5.0
|
112 |
+
}
|
113 |
+
# Adv
|
114 |
+
self.lambda_adv_g = 10. * 0 # turn to 0 to avoid adv training
|
115 |
+
self.lambda_adv_d = 3. * (self.lambda_adv_g > 0)
|
116 |
+
|
117 |
+
# PATH settings - inactive
|
118 |
+
self.data_root_dir = os.path.join(self.sys_home_dir, 'datasets/dis')
|
119 |
+
self.weights_root_dir = os.path.join(self.sys_home_dir, 'weights')
|
120 |
+
self.weights = {
|
121 |
+
'pvt_v2_b2': os.path.join(self.weights_root_dir, 'pvt_v2_b2.pth'),
|
122 |
+
'pvt_v2_b5': os.path.join(self.weights_root_dir, ['pvt_v2_b5.pth', 'pvt_v2_b5_22k.pth'][0]),
|
123 |
+
'swin_v1_b': os.path.join(self.weights_root_dir, ['swin_base_patch4_window12_384_22kto1k.pth', 'swin_base_patch4_window12_384_22k.pth'][0]),
|
124 |
+
'swin_v1_l': os.path.join(self.weights_root_dir, ['swin_large_patch4_window12_384_22kto1k.pth', 'swin_large_patch4_window12_384_22k.pth'][0]),
|
125 |
+
'swin_v1_t': os.path.join(self.weights_root_dir, ['swin_tiny_patch4_window7_224_22kto1k_finetune.pth'][0]),
|
126 |
+
'swin_v1_s': os.path.join(self.weights_root_dir, ['swin_small_patch4_window7_224_22kto1k_finetune.pth'][0]),
|
127 |
+
'pvt_v2_b0': os.path.join(self.weights_root_dir, ['pvt_v2_b0.pth'][0]),
|
128 |
+
'pvt_v2_b1': os.path.join(self.weights_root_dir, ['pvt_v2_b1.pth'][0]),
|
129 |
+
}
|
130 |
+
|
131 |
+
# Callbacks - inactive
|
132 |
+
self.verbose_eval = True
|
133 |
+
self.only_S_MAE = False
|
134 |
+
self.use_fp16 = False # Bugs. It may cause nan in training.
|
135 |
+
self.SDPA_enabled = False # Bugs. Slower and errors occur in multi-GPUs
|
136 |
+
|
137 |
+
# others
|
138 |
+
self.device = [0, 'cpu'][0] # .to(0) == .to('cuda:0')
|
139 |
+
|
140 |
+
self.batch_size_valid = 1
|
141 |
+
self.rand_seed = 7
|
142 |
+
run_sh_file = [f for f in os.listdir('.') if 'train.sh' == f] + [os.path.join('..', f) for f in os.listdir('..') if 'train.sh' == f]
|
143 |
+
with open(run_sh_file[0], 'r') as f:
|
144 |
+
lines = f.readlines()
|
145 |
+
self.save_last = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'val_last=' in l][0].split('val_last=')[-1].split()[0])
|
146 |
+
self.save_step = int([l.strip() for l in lines if '"{}")'.format(self.task) in l and 'step=' in l][0].split('step=')[-1].split()[0])
|
147 |
+
self.val_step = [0, self.save_step][0]
|
148 |
+
|
149 |
+
def print_task(self) -> None:
|
150 |
+
# Return task for choosing settings in shell scripts.
|
151 |
+
print(self.task)
|
152 |
+
|
153 |
+
if __name__ == '__main__':
|
154 |
+
config = Config()
|
155 |
+
config.print_task()
|
156 |
+
|
BiRefNet_github/dataset.py
ADDED
@@ -0,0 +1,112 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import cv2
|
3 |
+
from tqdm import tqdm
|
4 |
+
from PIL import Image
|
5 |
+
from torch.utils import data
|
6 |
+
from torchvision import transforms
|
7 |
+
|
8 |
+
from preproc import preproc
|
9 |
+
from config import Config
|
10 |
+
from utils import path_to_image
|
11 |
+
|
12 |
+
|
13 |
+
Image.MAX_IMAGE_PIXELS = None # remove DecompressionBombWarning
|
14 |
+
config = Config()
|
15 |
+
_class_labels_TR_sorted = (
|
16 |
+
'Airplane, Ant, Antenna, Archery, Axe, BabyCarriage, Bag, BalanceBeam, Balcony, Balloon, Basket, BasketballHoop, Beatle, Bed, Bee, Bench, Bicycle, '
|
17 |
+
'BicycleFrame, BicycleStand, Boat, Bonsai, BoomLift, Bridge, BunkBed, Butterfly, Button, Cable, CableLift, Cage, Camcorder, Cannon, Canoe, Car, '
|
18 |
+
'CarParkDropArm, Carriage, Cart, Caterpillar, CeilingLamp, Centipede, Chair, Clip, Clock, Clothes, CoatHanger, Comb, ConcretePumpTruck, Crack, Crane, '
|
19 |
+
'Cup, DentalChair, Desk, DeskChair, Diagram, DishRack, DoorHandle, Dragonfish, Dragonfly, Drum, Earphone, Easel, ElectricIron, Excavator, Eyeglasses, '
|
20 |
+
'Fan, Fence, Fencing, FerrisWheel, FireExtinguisher, Fishing, Flag, FloorLamp, Forklift, GasStation, Gate, Gear, Goal, Golf, GymEquipment, Hammock, '
|
21 |
+
'Handcart, Handcraft, Handrail, HangGlider, Harp, Harvester, Headset, Helicopter, Helmet, Hook, HorizontalBar, Hydrovalve, IroningTable, Jewelry, Key, '
|
22 |
+
'KidsPlayground, Kitchenware, Kite, Knife, Ladder, LaundryRack, Lightning, Lobster, Locust, Machine, MachineGun, MagazineRack, Mantis, Medal, MemorialArchway, '
|
23 |
+
'Microphone, Missile, MobileHolder, Monitor, Mosquito, Motorcycle, MovingTrolley, Mower, MusicPlayer, MusicStand, ObservationTower, Octopus, OilWell, '
|
24 |
+
'OlympicLogo, OperatingTable, OutdoorFitnessEquipment, Parachute, Pavilion, Piano, Pipe, PlowHarrow, PoleVault, Punchbag, Rack, Racket, Rifle, Ring, Robot, '
|
25 |
+
'RockClimbing, Rope, Sailboat, Satellite, Scaffold, Scale, Scissor, Scooter, Sculpture, Seadragon, Seahorse, Seal, SewingMachine, Ship, Shoe, ShoppingCart, '
|
26 |
+
'ShoppingTrolley, Shower, Shrimp, Signboard, Skateboarding, Skeleton, Skiing, Spade, SpeedBoat, Spider, Spoon, Stair, Stand, Stationary, SteeringWheel, '
|
27 |
+
'Stethoscope, Stool, Stove, StreetLamp, SweetStand, Swing, Sword, TV, Table, TableChair, TableLamp, TableTennis, Tank, Tapeline, Teapot, Telescope, Tent, '
|
28 |
+
'TobaccoPipe, Toy, Tractor, TrafficLight, TrafficSign, Trampoline, TransmissionTower, Tree, Tricycle, TrimmerCover, Tripod, Trombone, Truck, Trumpet, Tuba, '
|
29 |
+
'UAV, Umbrella, UnevenBars, UtilityPole, VacuumCleaner, Violin, Wakesurfing, Watch, WaterTower, WateringPot, Well, WellLid, Wheel, Wheelchair, WindTurbine, Windmill, WineGlass, WireWhisk, Yacht'
|
30 |
+
)
|
31 |
+
class_labels_TR_sorted = _class_labels_TR_sorted.split(', ')
|
32 |
+
|
33 |
+
|
34 |
+
class MyData(data.Dataset):
|
35 |
+
def __init__(self, datasets, image_size, is_train=True):
|
36 |
+
self.size_train = image_size
|
37 |
+
self.size_test = image_size
|
38 |
+
self.keep_size = not config.size
|
39 |
+
self.data_size = (config.size, config.size)
|
40 |
+
self.is_train = is_train
|
41 |
+
self.load_all = config.load_all
|
42 |
+
self.device = config.device
|
43 |
+
if self.is_train and config.auxiliary_classification:
|
44 |
+
self.cls_name2id = {_name: _id for _id, _name in enumerate(class_labels_TR_sorted)}
|
45 |
+
self.transform_image = transforms.Compose([
|
46 |
+
transforms.Resize(self.data_size),
|
47 |
+
transforms.ToTensor(),
|
48 |
+
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
|
49 |
+
][self.load_all or self.keep_size:])
|
50 |
+
self.transform_label = transforms.Compose([
|
51 |
+
transforms.Resize(self.data_size),
|
52 |
+
transforms.ToTensor(),
|
53 |
+
][self.load_all or self.keep_size:])
|
54 |
+
dataset_root = os.path.join(config.data_root_dir, config.task)
|
55 |
+
# datasets can be a list of different datasets for training on combined sets.
|
56 |
+
self.image_paths = []
|
57 |
+
for dataset in datasets.split('+'):
|
58 |
+
image_root = os.path.join(dataset_root, dataset, 'im')
|
59 |
+
self.image_paths += [os.path.join(image_root, p) for p in os.listdir(image_root)]
|
60 |
+
self.label_paths = []
|
61 |
+
for p in self.image_paths:
|
62 |
+
for ext in ['.png', '.jpg', '.PNG', '.JPG', '.JPEG']:
|
63 |
+
## 'im' and 'gt' may need modifying
|
64 |
+
p_gt = p.replace('/im/', '/gt/')[:-(len(p.split('.')[-1])+1)] + ext
|
65 |
+
file_exists = False
|
66 |
+
if os.path.exists(p_gt):
|
67 |
+
self.label_paths.append(p_gt)
|
68 |
+
file_exists = True
|
69 |
+
break
|
70 |
+
if not file_exists:
|
71 |
+
print('Not exists:', p_gt)
|
72 |
+
if self.load_all:
|
73 |
+
self.images_loaded, self.labels_loaded = [], []
|
74 |
+
self.class_labels_loaded = []
|
75 |
+
# for image_path, label_path in zip(self.image_paths, self.label_paths):
|
76 |
+
for image_path, label_path in tqdm(zip(self.image_paths, self.label_paths), total=len(self.image_paths)):
|
77 |
+
_image = path_to_image(image_path, size=(config.size, config.size), color_type='rgb')
|
78 |
+
_label = path_to_image(label_path, size=(config.size, config.size), color_type='gray')
|
79 |
+
self.images_loaded.append(_image)
|
80 |
+
self.labels_loaded.append(_label)
|
81 |
+
self.class_labels_loaded.append(
|
82 |
+
self.cls_name2id[label_path.split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
|
83 |
+
)
|
84 |
+
|
85 |
+
def __getitem__(self, index):
|
86 |
+
|
87 |
+
if self.load_all:
|
88 |
+
image = self.images_loaded[index]
|
89 |
+
label = self.labels_loaded[index]
|
90 |
+
class_label = self.class_labels_loaded[index] if self.is_train and config.auxiliary_classification else -1
|
91 |
+
else:
|
92 |
+
image = path_to_image(self.image_paths[index], size=(config.size, config.size), color_type='rgb')
|
93 |
+
label = path_to_image(self.label_paths[index], size=(config.size, config.size), color_type='gray')
|
94 |
+
class_label = self.cls_name2id[self.label_paths[index].split('/')[-1].split('#')[3]] if self.is_train and config.auxiliary_classification else -1
|
95 |
+
|
96 |
+
# loading image and label
|
97 |
+
if self.is_train:
|
98 |
+
image, label = preproc(image, label, preproc_methods=config.preproc_methods)
|
99 |
+
# else:
|
100 |
+
# if _label.shape[0] > 2048 or _label.shape[1] > 2048:
|
101 |
+
# _image = cv2.resize(_image, (2048, 2048), interpolation=cv2.INTER_LINEAR)
|
102 |
+
# _label = cv2.resize(_label, (2048, 2048), interpolation=cv2.INTER_LINEAR)
|
103 |
+
|
104 |
+
image, label = self.transform_image(image), self.transform_label(label)
|
105 |
+
|
106 |
+
if self.is_train:
|
107 |
+
return image, label, class_label
|
108 |
+
else:
|
109 |
+
return image, label, self.label_paths[index]
|
110 |
+
|
111 |
+
def __len__(self):
|
112 |
+
return len(self.image_paths)
|
BiRefNet_github/eval_existingOnes.py
ADDED
@@ -0,0 +1,139 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
from glob import glob
|
4 |
+
import prettytable as pt
|
5 |
+
|
6 |
+
from evaluation.evaluate import evaluator
|
7 |
+
from config import Config
|
8 |
+
|
9 |
+
|
10 |
+
config = Config()
|
11 |
+
|
12 |
+
|
13 |
+
def do_eval(args):
|
14 |
+
# evaluation for whole dataset
|
15 |
+
# dataset first in evaluation
|
16 |
+
for _data_name in args.data_lst.split('+'):
|
17 |
+
pred_data_dir = sorted(glob(os.path.join(args.pred_root, args.model_lst[0], _data_name)))
|
18 |
+
if not pred_data_dir:
|
19 |
+
print('Skip dataset {}.'.format(_data_name))
|
20 |
+
continue
|
21 |
+
gt_src = os.path.join(args.gt_root, _data_name)
|
22 |
+
gt_paths = sorted(glob(os.path.join(gt_src, 'gt', '*')))
|
23 |
+
print('#' * 20, _data_name, '#' * 20)
|
24 |
+
filename = os.path.join(args.save_dir, '{}_eval.txt'.format(_data_name))
|
25 |
+
tb = pt.PrettyTable()
|
26 |
+
tb.vertical_char = '&'
|
27 |
+
if config.task == 'DIS5K':
|
28 |
+
tb.field_names = ["Dataset", "Method", "maxFm", "wFmeasure", 'MAE', "Smeasure", "meanEm", "HCE", "maxEm", "meanFm", "adpEm", "adpFm"]
|
29 |
+
elif config.task == 'COD':
|
30 |
+
tb.field_names = ["Dataset", "Method", "Smeasure", "wFmeasure", "meanFm", "meanEm", "maxEm", 'MAE', "maxFm", "adpEm", "adpFm", "HCE"]
|
31 |
+
elif config.task == 'HRSOD':
|
32 |
+
tb.field_names = ["Dataset", "Method", "Smeasure", "maxFm", "meanEm", 'MAE', "maxEm", "meanFm", "wFmeasure", "adpEm", "adpFm", "HCE"]
|
33 |
+
elif config.task == 'DIS5K+HRSOD+HRS10K':
|
34 |
+
tb.field_names = ["Dataset", "Method", "maxFm", "wFmeasure", 'MAE', "Smeasure", "meanEm", "HCE", "maxEm", "meanFm", "adpEm", "adpFm"]
|
35 |
+
elif config.task == 'P3M-10k':
|
36 |
+
tb.field_names = ["Dataset", "Method", "Smeasure", "maxFm", "meanEm", 'MAE', "maxEm", "meanFm", "wFmeasure", "adpEm", "adpFm", "HCE"]
|
37 |
+
else:
|
38 |
+
tb.field_names = ["Dataset", "Method", "Smeasure", 'MAE', "maxEm", "meanEm", "maxFm", "meanFm", "wFmeasure", "adpEm", "adpFm", "HCE"]
|
39 |
+
for _model_name in args.model_lst[:]:
|
40 |
+
print('\t', 'Evaluating model: {}...'.format(_model_name))
|
41 |
+
pred_paths = [p.replace(args.gt_root, os.path.join(args.pred_root, _model_name)).replace('/gt/', '/') for p in gt_paths]
|
42 |
+
# print(pred_paths[:1], gt_paths[:1])
|
43 |
+
em, sm, fm, mae, wfm, hce = evaluator(
|
44 |
+
gt_paths=gt_paths,
|
45 |
+
pred_paths=pred_paths,
|
46 |
+
metrics=args.metrics.split('+'),
|
47 |
+
verbose=config.verbose_eval
|
48 |
+
)
|
49 |
+
if config.task == 'DIS5K':
|
50 |
+
scores = [
|
51 |
+
fm['curve'].max().round(3), wfm.round(3), mae.round(3), sm.round(3), em['curve'].mean().round(3), int(hce.round()),
|
52 |
+
em['curve'].max().round(3), fm['curve'].mean().round(3), em['adp'].round(3), fm['adp'].round(3),
|
53 |
+
]
|
54 |
+
elif config.task == 'COD':
|
55 |
+
scores = [
|
56 |
+
sm.round(3), wfm.round(3), fm['curve'].mean().round(3), em['curve'].mean().round(3), em['curve'].max().round(3), mae.round(3),
|
57 |
+
fm['curve'].max().round(3), em['adp'].round(3), fm['adp'].round(3), int(hce.round()),
|
58 |
+
]
|
59 |
+
elif config.task == 'HRSOD':
|
60 |
+
scores = [
|
61 |
+
sm.round(3), fm['curve'].max().round(3), em['curve'].mean().round(3), mae.round(3),
|
62 |
+
em['curve'].max().round(3), fm['curve'].mean().round(3), wfm.round(3), em['adp'].round(3), fm['adp'].round(3), int(hce.round()),
|
63 |
+
]
|
64 |
+
elif config.task == 'DIS5K+HRSOD+HRS10K':
|
65 |
+
scores = [
|
66 |
+
fm['curve'].max().round(3), wfm.round(3), mae.round(3), sm.round(3), em['curve'].mean().round(3), int(hce.round()),
|
67 |
+
em['curve'].max().round(3), fm['curve'].mean().round(3), em['adp'].round(3), fm['adp'].round(3),
|
68 |
+
]
|
69 |
+
elif config.task == 'P3M-10k':
|
70 |
+
scores = [
|
71 |
+
sm.round(3), fm['curve'].max().round(3), em['curve'].mean().round(3), mae.round(3),
|
72 |
+
em['curve'].max().round(3), fm['curve'].mean().round(3), wfm.round(3), em['adp'].round(3), fm['adp'].round(3), int(hce.round()),
|
73 |
+
]
|
74 |
+
else:
|
75 |
+
scores = [
|
76 |
+
sm.round(3), mae.round(3), em['curve'].max().round(3), em['curve'].mean().round(3),
|
77 |
+
fm['curve'].max().round(3), fm['curve'].mean().round(3), wfm.round(3),
|
78 |
+
em['adp'].round(3), fm['adp'].round(3), int(hce.round()),
|
79 |
+
]
|
80 |
+
|
81 |
+
for idx_score, score in enumerate(scores):
|
82 |
+
scores[idx_score] = '.' + format(score, '.3f').split('.')[-1] if score <= 1 else format(score, '<4')
|
83 |
+
records = [_data_name, _model_name] + scores
|
84 |
+
tb.add_row(records)
|
85 |
+
# Write results after every check.
|
86 |
+
with open(filename, 'w+') as file_to_write:
|
87 |
+
file_to_write.write(str(tb)+'\n')
|
88 |
+
print(tb)
|
89 |
+
|
90 |
+
|
91 |
+
if __name__ == '__main__':
|
92 |
+
# set parameters
|
93 |
+
parser = argparse.ArgumentParser()
|
94 |
+
parser.add_argument(
|
95 |
+
'--gt_root', type=str, help='ground-truth root',
|
96 |
+
default=os.path.join(config.data_root_dir, config.task))
|
97 |
+
parser.add_argument(
|
98 |
+
'--pred_root', type=str, help='prediction root',
|
99 |
+
default='./e_preds')
|
100 |
+
parser.add_argument(
|
101 |
+
'--data_lst', type=str, help='test dataset',
|
102 |
+
default={
|
103 |
+
'DIS5K': '+'.join(['DIS-VD', 'DIS-TE1', 'DIS-TE2', 'DIS-TE3', 'DIS-TE4'][:]),
|
104 |
+
'COD': '+'.join(['TE-COD10K', 'NC4K', 'TE-CAMO', 'CHAMELEON'][:]),
|
105 |
+
'HRSOD': '+'.join(['DAVIS-S', 'TE-HRSOD', 'TE-UHRSD', 'TE-DUTS', 'DUT-OMRON'][:]),
|
106 |
+
'DIS5K+HRSOD+HRS10K': '+'.join(['DIS-VD'][:]),
|
107 |
+
'P3M-10k': '+'.join(['TE-P3M-500-P', 'TE-P3M-500-NP'][:]),
|
108 |
+
}[config.task])
|
109 |
+
parser.add_argument(
|
110 |
+
'--save_dir', type=str, help='candidate competitors',
|
111 |
+
default='e_results')
|
112 |
+
parser.add_argument(
|
113 |
+
'--check_integrity', type=bool, help='whether to check the file integrity',
|
114 |
+
default=False)
|
115 |
+
parser.add_argument(
|
116 |
+
'--metrics', type=str, help='candidate competitors',
|
117 |
+
default='+'.join(['S', 'MAE', 'E', 'F', 'WF', 'HCE'][:100 if 'DIS5K' in config.task else -1]))
|
118 |
+
args = parser.parse_args()
|
119 |
+
|
120 |
+
os.makedirs(args.save_dir, exist_ok=True)
|
121 |
+
try:
|
122 |
+
args.model_lst = [m for m in sorted(os.listdir(args.pred_root), key=lambda x: int(x.split('epoch_')[-1]), reverse=True) if int(m.split('epoch_')[-1]) % 1 == 0]
|
123 |
+
except:
|
124 |
+
args.model_lst = [m for m in sorted(os.listdir(args.pred_root))]
|
125 |
+
|
126 |
+
# check the integrity of each candidates
|
127 |
+
if args.check_integrity:
|
128 |
+
for _data_name in args.data_lst.split('+'):
|
129 |
+
for _model_name in args.model_lst:
|
130 |
+
gt_pth = os.path.join(args.gt_root, _data_name)
|
131 |
+
pred_pth = os.path.join(args.pred_root, _model_name, _data_name)
|
132 |
+
if not sorted(os.listdir(gt_pth)) == sorted(os.listdir(pred_pth)):
|
133 |
+
print(len(sorted(os.listdir(gt_pth))), len(sorted(os.listdir(pred_pth))))
|
134 |
+
print('The {} Dataset of {} Model is not matching to the ground-truth'.format(_data_name, _model_name))
|
135 |
+
else:
|
136 |
+
print('>>> skip check the integrity of each candidates')
|
137 |
+
|
138 |
+
# start engine
|
139 |
+
do_eval(args)
|
BiRefNet_github/evaluation/evaluate.py
ADDED
@@ -0,0 +1,60 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import prettytable as pt
|
3 |
+
|
4 |
+
from evaluation.metrics import evaluator
|
5 |
+
from config import Config
|
6 |
+
|
7 |
+
|
8 |
+
config = Config()
|
9 |
+
|
10 |
+
def evaluate(pred_dir, method, testset, only_S_MAE=False, epoch=0):
|
11 |
+
filename = os.path.join('evaluation', 'eval-{}.txt'.format(method))
|
12 |
+
if os.path.exists(filename):
|
13 |
+
id_suffix = 1
|
14 |
+
filename = filename.rstrip('.txt') + '_{}.txt'.format(id_suffix)
|
15 |
+
while os.path.exists(filename):
|
16 |
+
id_suffix += 1
|
17 |
+
filename = filename.replace('_{}.txt'.format(id_suffix-1), '_{}.txt'.format(id_suffix))
|
18 |
+
gt_paths = sorted([
|
19 |
+
os.path.join(config.data_root_dir, config.task, testset, 'gt', p)
|
20 |
+
for p in os.listdir(os.path.join(config.data_root_dir, config.task, testset, 'gt'))
|
21 |
+
])
|
22 |
+
pred_paths = sorted([os.path.join(pred_dir, method, testset, p) for p in os.listdir(os.path.join(pred_dir, method, testset))])
|
23 |
+
with open(filename, 'a+') as file_to_write:
|
24 |
+
tb = pt.PrettyTable()
|
25 |
+
field_names = [
|
26 |
+
"Dataset", "Method", "maxFm", "wFmeasure", 'MAE', "Smeasure", "meanEm", "maxEm", "meanFm",
|
27 |
+
"adpEm", "adpFm", 'HCE'
|
28 |
+
]
|
29 |
+
tb.field_names = [name for name in field_names if not only_S_MAE or all(metric not in name for metric in ['Em', 'Fm'])]
|
30 |
+
em, sm, fm, mae, wfm, hce = evaluator(
|
31 |
+
gt_paths=gt_paths[:],
|
32 |
+
pred_paths=pred_paths[:],
|
33 |
+
metrics=['S', 'MAE', 'E', 'F', 'HCE'][:10*(not only_S_MAE) + 2], # , 'WF'
|
34 |
+
verbose=config.verbose_eval,
|
35 |
+
)
|
36 |
+
e_max, e_mean, e_adp = em['curve'].max(), em['curve'].mean(), em['adp'].mean()
|
37 |
+
f_max, f_mean, f_wfm, f_adp = fm['curve'].max(), fm['curve'].mean(), wfm, fm['adp']
|
38 |
+
tb.add_row(
|
39 |
+
[
|
40 |
+
method+str(epoch), testset, f_max.round(3), f_wfm.round(3), mae.round(3), sm.round(3),
|
41 |
+
e_mean.round(3), e_max.round(3), f_mean.round(3), em['adp'].round(3), f_adp.round(3), hce.round(3)
|
42 |
+
] if not only_S_MAE else [method, testset, mae.round(3), sm.round(3)]
|
43 |
+
)
|
44 |
+
print(tb)
|
45 |
+
file_to_write.write(str(tb).replace('+', '|')+'\n')
|
46 |
+
file_to_write.close()
|
47 |
+
return {'e_max': e_max, 'e_mean': e_mean, 'e_adp': e_adp, 'sm': sm, 'mae': mae, 'f_max': f_max, 'f_mean': f_mean, 'f_wfm': f_wfm, 'f_adp': f_adp, 'hce': hce}
|
48 |
+
|
49 |
+
|
50 |
+
def main():
|
51 |
+
only_S_MAE = False
|
52 |
+
pred_dir = '.'
|
53 |
+
method = 'tmp_val'
|
54 |
+
testsets = 'DIS-VD+DIS-TE1'
|
55 |
+
for testset in testsets.split('+'):
|
56 |
+
res_dct = evaluate(pred_dir, method, testset, only_S_MAE=only_S_MAE)
|
57 |
+
|
58 |
+
|
59 |
+
if __name__ == '__main__':
|
60 |
+
main()
|
BiRefNet_github/evaluation/metrics.py
ADDED
@@ -0,0 +1,612 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from tqdm import tqdm
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from scipy.ndimage import convolve, distance_transform_edt as bwdist
|
6 |
+
from skimage.morphology import skeletonize
|
7 |
+
from skimage.morphology import disk
|
8 |
+
from skimage.measure import label
|
9 |
+
|
10 |
+
|
11 |
+
_EPS = np.spacing(1)
|
12 |
+
_TYPE = np.float64
|
13 |
+
|
14 |
+
|
15 |
+
def evaluator(gt_paths, pred_paths, metrics=['S', 'MAE', 'E', 'F', 'WF', 'HCE'], verbose=False):
|
16 |
+
# define measures
|
17 |
+
if 'E' in metrics:
|
18 |
+
EM = Emeasure()
|
19 |
+
if 'S' in metrics:
|
20 |
+
SM = Smeasure()
|
21 |
+
if 'F' in metrics:
|
22 |
+
FM = Fmeasure()
|
23 |
+
if 'MAE' in metrics:
|
24 |
+
MAE = MAEmeasure()
|
25 |
+
if 'WF' in metrics:
|
26 |
+
WFM = WeightedFmeasure()
|
27 |
+
if 'HCE' in metrics:
|
28 |
+
HCE = HCEMeasure()
|
29 |
+
|
30 |
+
if isinstance(gt_paths, list) and isinstance(pred_paths, list):
|
31 |
+
# print(len(gt_paths), len(pred_paths))
|
32 |
+
assert len(gt_paths) == len(pred_paths)
|
33 |
+
|
34 |
+
for idx_sample in tqdm(range(len(gt_paths)), total=len(gt_paths)) if verbose else range(len(gt_paths)):
|
35 |
+
gt = gt_paths[idx_sample]
|
36 |
+
pred = pred_paths[idx_sample]
|
37 |
+
|
38 |
+
pred = pred[:-4] + '.png'
|
39 |
+
if os.path.exists(pred):
|
40 |
+
pred_ary = cv2.imread(pred, cv2.IMREAD_GRAYSCALE)
|
41 |
+
else:
|
42 |
+
pred_ary = cv2.imread(pred.replace('.png', '.jpg'), cv2.IMREAD_GRAYSCALE)
|
43 |
+
gt_ary = cv2.imread(gt, cv2.IMREAD_GRAYSCALE)
|
44 |
+
pred_ary = cv2.resize(pred_ary, (gt_ary.shape[1], gt_ary.shape[0]))
|
45 |
+
|
46 |
+
if 'E' in metrics:
|
47 |
+
EM.step(pred=pred_ary, gt=gt_ary)
|
48 |
+
if 'S' in metrics:
|
49 |
+
SM.step(pred=pred_ary, gt=gt_ary)
|
50 |
+
if 'F' in metrics:
|
51 |
+
FM.step(pred=pred_ary, gt=gt_ary)
|
52 |
+
if 'MAE' in metrics:
|
53 |
+
MAE.step(pred=pred_ary, gt=gt_ary)
|
54 |
+
if 'WF' in metrics:
|
55 |
+
WFM.step(pred=pred_ary, gt=gt_ary)
|
56 |
+
if 'HCE' in metrics:
|
57 |
+
ske_path = gt.replace('/gt/', '/ske/')
|
58 |
+
if os.path.exists(ske_path):
|
59 |
+
ske_ary = cv2.imread(ske_path, cv2.IMREAD_GRAYSCALE)
|
60 |
+
ske_ary = ske_ary > 128
|
61 |
+
else:
|
62 |
+
ske_ary = skeletonize(gt_ary > 128)
|
63 |
+
ske_save_dir = os.path.join(*ske_path.split(os.sep)[:-1])
|
64 |
+
if ske_path[0] == os.sep:
|
65 |
+
ske_save_dir = os.sep + ske_save_dir
|
66 |
+
os.makedirs(ske_save_dir, exist_ok=True)
|
67 |
+
cv2.imwrite(ske_path, ske_ary.astype(np.uint8) * 255)
|
68 |
+
HCE.step(pred=pred_ary, gt=gt_ary, gt_ske=ske_ary)
|
69 |
+
|
70 |
+
if 'E' in metrics:
|
71 |
+
em = EM.get_results()['em']
|
72 |
+
else:
|
73 |
+
em = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)}
|
74 |
+
if 'S' in metrics:
|
75 |
+
sm = SM.get_results()['sm']
|
76 |
+
else:
|
77 |
+
sm = np.float64(-1)
|
78 |
+
if 'F' in metrics:
|
79 |
+
fm = FM.get_results()['fm']
|
80 |
+
else:
|
81 |
+
fm = {'curve': np.array([np.float64(-1)]), 'adp': np.float64(-1)}
|
82 |
+
if 'MAE' in metrics:
|
83 |
+
mae = MAE.get_results()['mae']
|
84 |
+
else:
|
85 |
+
mae = np.float64(-1)
|
86 |
+
if 'WF' in metrics:
|
87 |
+
wfm = WFM.get_results()['wfm']
|
88 |
+
else:
|
89 |
+
wfm = np.float64(-1)
|
90 |
+
if 'HCE' in metrics:
|
91 |
+
hce = HCE.get_results()['hce']
|
92 |
+
else:
|
93 |
+
hce = np.float64(-1)
|
94 |
+
|
95 |
+
return em, sm, fm, mae, wfm, hce
|
96 |
+
|
97 |
+
|
98 |
+
def _prepare_data(pred: np.ndarray, gt: np.ndarray) -> tuple:
|
99 |
+
gt = gt > 128
|
100 |
+
pred = pred / 255
|
101 |
+
if pred.max() != pred.min():
|
102 |
+
pred = (pred - pred.min()) / (pred.max() - pred.min())
|
103 |
+
return pred, gt
|
104 |
+
|
105 |
+
|
106 |
+
def _get_adaptive_threshold(matrix: np.ndarray, max_value: float = 1) -> float:
|
107 |
+
return min(2 * matrix.mean(), max_value)
|
108 |
+
|
109 |
+
|
110 |
+
class Fmeasure(object):
|
111 |
+
def __init__(self, beta: float = 0.3):
|
112 |
+
self.beta = beta
|
113 |
+
self.precisions = []
|
114 |
+
self.recalls = []
|
115 |
+
self.adaptive_fms = []
|
116 |
+
self.changeable_fms = []
|
117 |
+
|
118 |
+
def step(self, pred: np.ndarray, gt: np.ndarray):
|
119 |
+
pred, gt = _prepare_data(pred, gt)
|
120 |
+
|
121 |
+
adaptive_fm = self.cal_adaptive_fm(pred=pred, gt=gt)
|
122 |
+
self.adaptive_fms.append(adaptive_fm)
|
123 |
+
|
124 |
+
precisions, recalls, changeable_fms = self.cal_pr(pred=pred, gt=gt)
|
125 |
+
self.precisions.append(precisions)
|
126 |
+
self.recalls.append(recalls)
|
127 |
+
self.changeable_fms.append(changeable_fms)
|
128 |
+
|
129 |
+
def cal_adaptive_fm(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
130 |
+
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
|
131 |
+
binary_predcition = pred >= adaptive_threshold
|
132 |
+
area_intersection = binary_predcition[gt].sum()
|
133 |
+
if area_intersection == 0:
|
134 |
+
adaptive_fm = 0
|
135 |
+
else:
|
136 |
+
pre = area_intersection / np.count_nonzero(binary_predcition)
|
137 |
+
rec = area_intersection / np.count_nonzero(gt)
|
138 |
+
adaptive_fm = (1 + self.beta) * pre * rec / (self.beta * pre + rec)
|
139 |
+
return adaptive_fm
|
140 |
+
|
141 |
+
def cal_pr(self, pred: np.ndarray, gt: np.ndarray) -> tuple:
|
142 |
+
pred = (pred * 255).astype(np.uint8)
|
143 |
+
bins = np.linspace(0, 256, 257)
|
144 |
+
fg_hist, _ = np.histogram(pred[gt], bins=bins)
|
145 |
+
bg_hist, _ = np.histogram(pred[~gt], bins=bins)
|
146 |
+
fg_w_thrs = np.cumsum(np.flip(fg_hist), axis=0)
|
147 |
+
bg_w_thrs = np.cumsum(np.flip(bg_hist), axis=0)
|
148 |
+
TPs = fg_w_thrs
|
149 |
+
Ps = fg_w_thrs + bg_w_thrs
|
150 |
+
Ps[Ps == 0] = 1
|
151 |
+
T = max(np.count_nonzero(gt), 1)
|
152 |
+
precisions = TPs / Ps
|
153 |
+
recalls = TPs / T
|
154 |
+
numerator = (1 + self.beta) * precisions * recalls
|
155 |
+
denominator = np.where(numerator == 0, 1, self.beta * precisions + recalls)
|
156 |
+
changeable_fms = numerator / denominator
|
157 |
+
return precisions, recalls, changeable_fms
|
158 |
+
|
159 |
+
def get_results(self) -> dict:
|
160 |
+
adaptive_fm = np.mean(np.array(self.adaptive_fms, _TYPE))
|
161 |
+
changeable_fm = np.mean(np.array(self.changeable_fms, dtype=_TYPE), axis=0)
|
162 |
+
precision = np.mean(np.array(self.precisions, dtype=_TYPE), axis=0) # N, 256
|
163 |
+
recall = np.mean(np.array(self.recalls, dtype=_TYPE), axis=0) # N, 256
|
164 |
+
return dict(fm=dict(adp=adaptive_fm, curve=changeable_fm),
|
165 |
+
pr=dict(p=precision, r=recall))
|
166 |
+
|
167 |
+
|
168 |
+
class MAEmeasure(object):
|
169 |
+
def __init__(self):
|
170 |
+
self.maes = []
|
171 |
+
|
172 |
+
def step(self, pred: np.ndarray, gt: np.ndarray):
|
173 |
+
pred, gt = _prepare_data(pred, gt)
|
174 |
+
|
175 |
+
mae = self.cal_mae(pred, gt)
|
176 |
+
self.maes.append(mae)
|
177 |
+
|
178 |
+
def cal_mae(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
179 |
+
mae = np.mean(np.abs(pred - gt))
|
180 |
+
return mae
|
181 |
+
|
182 |
+
def get_results(self) -> dict:
|
183 |
+
mae = np.mean(np.array(self.maes, _TYPE))
|
184 |
+
return dict(mae=mae)
|
185 |
+
|
186 |
+
|
187 |
+
class Smeasure(object):
|
188 |
+
def __init__(self, alpha: float = 0.5):
|
189 |
+
self.sms = []
|
190 |
+
self.alpha = alpha
|
191 |
+
|
192 |
+
def step(self, pred: np.ndarray, gt: np.ndarray):
|
193 |
+
pred, gt = _prepare_data(pred=pred, gt=gt)
|
194 |
+
|
195 |
+
sm = self.cal_sm(pred, gt)
|
196 |
+
self.sms.append(sm)
|
197 |
+
|
198 |
+
def cal_sm(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
199 |
+
y = np.mean(gt)
|
200 |
+
if y == 0:
|
201 |
+
sm = 1 - np.mean(pred)
|
202 |
+
elif y == 1:
|
203 |
+
sm = np.mean(pred)
|
204 |
+
else:
|
205 |
+
sm = self.alpha * self.object(pred, gt) + (1 - self.alpha) * self.region(pred, gt)
|
206 |
+
sm = max(0, sm)
|
207 |
+
return sm
|
208 |
+
|
209 |
+
def object(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
210 |
+
fg = pred * gt
|
211 |
+
bg = (1 - pred) * (1 - gt)
|
212 |
+
u = np.mean(gt)
|
213 |
+
object_score = u * self.s_object(fg, gt) + (1 - u) * self.s_object(bg, 1 - gt)
|
214 |
+
return object_score
|
215 |
+
|
216 |
+
def s_object(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
217 |
+
x = np.mean(pred[gt == 1])
|
218 |
+
sigma_x = np.std(pred[gt == 1], ddof=1)
|
219 |
+
score = 2 * x / (np.power(x, 2) + 1 + sigma_x + _EPS)
|
220 |
+
return score
|
221 |
+
|
222 |
+
def region(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
223 |
+
x, y = self.centroid(gt)
|
224 |
+
part_info = self.divide_with_xy(pred, gt, x, y)
|
225 |
+
w1, w2, w3, w4 = part_info['weight']
|
226 |
+
pred1, pred2, pred3, pred4 = part_info['pred']
|
227 |
+
gt1, gt2, gt3, gt4 = part_info['gt']
|
228 |
+
score1 = self.ssim(pred1, gt1)
|
229 |
+
score2 = self.ssim(pred2, gt2)
|
230 |
+
score3 = self.ssim(pred3, gt3)
|
231 |
+
score4 = self.ssim(pred4, gt4)
|
232 |
+
|
233 |
+
return w1 * score1 + w2 * score2 + w3 * score3 + w4 * score4
|
234 |
+
|
235 |
+
def centroid(self, matrix: np.ndarray) -> tuple:
|
236 |
+
h, w = matrix.shape
|
237 |
+
area_object = np.count_nonzero(matrix)
|
238 |
+
if area_object == 0:
|
239 |
+
x = np.round(w / 2)
|
240 |
+
y = np.round(h / 2)
|
241 |
+
else:
|
242 |
+
# More details can be found at: https://www.yuque.com/lart/blog/gpbigm
|
243 |
+
y, x = np.argwhere(matrix).mean(axis=0).round()
|
244 |
+
return int(x) + 1, int(y) + 1
|
245 |
+
|
246 |
+
def divide_with_xy(self, pred: np.ndarray, gt: np.ndarray, x, y) -> dict:
|
247 |
+
h, w = gt.shape
|
248 |
+
area = h * w
|
249 |
+
|
250 |
+
gt_LT = gt[0:y, 0:x]
|
251 |
+
gt_RT = gt[0:y, x:w]
|
252 |
+
gt_LB = gt[y:h, 0:x]
|
253 |
+
gt_RB = gt[y:h, x:w]
|
254 |
+
|
255 |
+
pred_LT = pred[0:y, 0:x]
|
256 |
+
pred_RT = pred[0:y, x:w]
|
257 |
+
pred_LB = pred[y:h, 0:x]
|
258 |
+
pred_RB = pred[y:h, x:w]
|
259 |
+
|
260 |
+
w1 = x * y / area
|
261 |
+
w2 = y * (w - x) / area
|
262 |
+
w3 = (h - y) * x / area
|
263 |
+
w4 = 1 - w1 - w2 - w3
|
264 |
+
|
265 |
+
return dict(gt=(gt_LT, gt_RT, gt_LB, gt_RB),
|
266 |
+
pred=(pred_LT, pred_RT, pred_LB, pred_RB),
|
267 |
+
weight=(w1, w2, w3, w4))
|
268 |
+
|
269 |
+
def ssim(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
270 |
+
h, w = pred.shape
|
271 |
+
N = h * w
|
272 |
+
|
273 |
+
x = np.mean(pred)
|
274 |
+
y = np.mean(gt)
|
275 |
+
|
276 |
+
sigma_x = np.sum((pred - x) ** 2) / (N - 1)
|
277 |
+
sigma_y = np.sum((gt - y) ** 2) / (N - 1)
|
278 |
+
sigma_xy = np.sum((pred - x) * (gt - y)) / (N - 1)
|
279 |
+
|
280 |
+
alpha = 4 * x * y * sigma_xy
|
281 |
+
beta = (x ** 2 + y ** 2) * (sigma_x + sigma_y)
|
282 |
+
|
283 |
+
if alpha != 0:
|
284 |
+
score = alpha / (beta + _EPS)
|
285 |
+
elif alpha == 0 and beta == 0:
|
286 |
+
score = 1
|
287 |
+
else:
|
288 |
+
score = 0
|
289 |
+
return score
|
290 |
+
|
291 |
+
def get_results(self) -> dict:
|
292 |
+
sm = np.mean(np.array(self.sms, dtype=_TYPE))
|
293 |
+
return dict(sm=sm)
|
294 |
+
|
295 |
+
|
296 |
+
class Emeasure(object):
|
297 |
+
def __init__(self):
|
298 |
+
self.adaptive_ems = []
|
299 |
+
self.changeable_ems = []
|
300 |
+
|
301 |
+
def step(self, pred: np.ndarray, gt: np.ndarray):
|
302 |
+
pred, gt = _prepare_data(pred=pred, gt=gt)
|
303 |
+
self.gt_fg_numel = np.count_nonzero(gt)
|
304 |
+
self.gt_size = gt.shape[0] * gt.shape[1]
|
305 |
+
|
306 |
+
changeable_ems = self.cal_changeable_em(pred, gt)
|
307 |
+
self.changeable_ems.append(changeable_ems)
|
308 |
+
adaptive_em = self.cal_adaptive_em(pred, gt)
|
309 |
+
self.adaptive_ems.append(adaptive_em)
|
310 |
+
|
311 |
+
def cal_adaptive_em(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
312 |
+
adaptive_threshold = _get_adaptive_threshold(pred, max_value=1)
|
313 |
+
adaptive_em = self.cal_em_with_threshold(pred, gt, threshold=adaptive_threshold)
|
314 |
+
return adaptive_em
|
315 |
+
|
316 |
+
def cal_changeable_em(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
|
317 |
+
changeable_ems = self.cal_em_with_cumsumhistogram(pred, gt)
|
318 |
+
return changeable_ems
|
319 |
+
|
320 |
+
def cal_em_with_threshold(self, pred: np.ndarray, gt: np.ndarray, threshold: float) -> float:
|
321 |
+
binarized_pred = pred >= threshold
|
322 |
+
fg_fg_numel = np.count_nonzero(binarized_pred & gt)
|
323 |
+
fg_bg_numel = np.count_nonzero(binarized_pred & ~gt)
|
324 |
+
|
325 |
+
fg___numel = fg_fg_numel + fg_bg_numel
|
326 |
+
bg___numel = self.gt_size - fg___numel
|
327 |
+
|
328 |
+
if self.gt_fg_numel == 0:
|
329 |
+
enhanced_matrix_sum = bg___numel
|
330 |
+
elif self.gt_fg_numel == self.gt_size:
|
331 |
+
enhanced_matrix_sum = fg___numel
|
332 |
+
else:
|
333 |
+
parts_numel, combinations = self.generate_parts_numel_combinations(
|
334 |
+
fg_fg_numel=fg_fg_numel, fg_bg_numel=fg_bg_numel,
|
335 |
+
pred_fg_numel=fg___numel, pred_bg_numel=bg___numel,
|
336 |
+
)
|
337 |
+
|
338 |
+
results_parts = []
|
339 |
+
for i, (part_numel, combination) in enumerate(zip(parts_numel, combinations)):
|
340 |
+
align_matrix_value = 2 * (combination[0] * combination[1]) / \
|
341 |
+
(combination[0] ** 2 + combination[1] ** 2 + _EPS)
|
342 |
+
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
|
343 |
+
results_parts.append(enhanced_matrix_value * part_numel)
|
344 |
+
enhanced_matrix_sum = sum(results_parts)
|
345 |
+
|
346 |
+
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
|
347 |
+
return em
|
348 |
+
|
349 |
+
def cal_em_with_cumsumhistogram(self, pred: np.ndarray, gt: np.ndarray) -> np.ndarray:
|
350 |
+
pred = (pred * 255).astype(np.uint8)
|
351 |
+
bins = np.linspace(0, 256, 257)
|
352 |
+
fg_fg_hist, _ = np.histogram(pred[gt], bins=bins)
|
353 |
+
fg_bg_hist, _ = np.histogram(pred[~gt], bins=bins)
|
354 |
+
fg_fg_numel_w_thrs = np.cumsum(np.flip(fg_fg_hist), axis=0)
|
355 |
+
fg_bg_numel_w_thrs = np.cumsum(np.flip(fg_bg_hist), axis=0)
|
356 |
+
|
357 |
+
fg___numel_w_thrs = fg_fg_numel_w_thrs + fg_bg_numel_w_thrs
|
358 |
+
bg___numel_w_thrs = self.gt_size - fg___numel_w_thrs
|
359 |
+
|
360 |
+
if self.gt_fg_numel == 0:
|
361 |
+
enhanced_matrix_sum = bg___numel_w_thrs
|
362 |
+
elif self.gt_fg_numel == self.gt_size:
|
363 |
+
enhanced_matrix_sum = fg___numel_w_thrs
|
364 |
+
else:
|
365 |
+
parts_numel_w_thrs, combinations = self.generate_parts_numel_combinations(
|
366 |
+
fg_fg_numel=fg_fg_numel_w_thrs, fg_bg_numel=fg_bg_numel_w_thrs,
|
367 |
+
pred_fg_numel=fg___numel_w_thrs, pred_bg_numel=bg___numel_w_thrs,
|
368 |
+
)
|
369 |
+
|
370 |
+
results_parts = np.empty(shape=(4, 256), dtype=np.float64)
|
371 |
+
for i, (part_numel, combination) in enumerate(zip(parts_numel_w_thrs, combinations)):
|
372 |
+
align_matrix_value = 2 * (combination[0] * combination[1]) / \
|
373 |
+
(combination[0] ** 2 + combination[1] ** 2 + _EPS)
|
374 |
+
enhanced_matrix_value = (align_matrix_value + 1) ** 2 / 4
|
375 |
+
results_parts[i] = enhanced_matrix_value * part_numel
|
376 |
+
enhanced_matrix_sum = results_parts.sum(axis=0)
|
377 |
+
|
378 |
+
em = enhanced_matrix_sum / (self.gt_size - 1 + _EPS)
|
379 |
+
return em
|
380 |
+
|
381 |
+
def generate_parts_numel_combinations(self, fg_fg_numel, fg_bg_numel, pred_fg_numel, pred_bg_numel):
|
382 |
+
bg_fg_numel = self.gt_fg_numel - fg_fg_numel
|
383 |
+
bg_bg_numel = pred_bg_numel - bg_fg_numel
|
384 |
+
|
385 |
+
parts_numel = [fg_fg_numel, fg_bg_numel, bg_fg_numel, bg_bg_numel]
|
386 |
+
|
387 |
+
mean_pred_value = pred_fg_numel / self.gt_size
|
388 |
+
mean_gt_value = self.gt_fg_numel / self.gt_size
|
389 |
+
|
390 |
+
demeaned_pred_fg_value = 1 - mean_pred_value
|
391 |
+
demeaned_pred_bg_value = 0 - mean_pred_value
|
392 |
+
demeaned_gt_fg_value = 1 - mean_gt_value
|
393 |
+
demeaned_gt_bg_value = 0 - mean_gt_value
|
394 |
+
|
395 |
+
combinations = [
|
396 |
+
(demeaned_pred_fg_value, demeaned_gt_fg_value),
|
397 |
+
(demeaned_pred_fg_value, demeaned_gt_bg_value),
|
398 |
+
(demeaned_pred_bg_value, demeaned_gt_fg_value),
|
399 |
+
(demeaned_pred_bg_value, demeaned_gt_bg_value)
|
400 |
+
]
|
401 |
+
return parts_numel, combinations
|
402 |
+
|
403 |
+
def get_results(self) -> dict:
|
404 |
+
adaptive_em = np.mean(np.array(self.adaptive_ems, dtype=_TYPE))
|
405 |
+
changeable_em = np.mean(np.array(self.changeable_ems, dtype=_TYPE), axis=0)
|
406 |
+
return dict(em=dict(adp=adaptive_em, curve=changeable_em))
|
407 |
+
|
408 |
+
|
409 |
+
class WeightedFmeasure(object):
|
410 |
+
def __init__(self, beta: float = 1):
|
411 |
+
self.beta = beta
|
412 |
+
self.weighted_fms = []
|
413 |
+
|
414 |
+
def step(self, pred: np.ndarray, gt: np.ndarray):
|
415 |
+
pred, gt = _prepare_data(pred=pred, gt=gt)
|
416 |
+
|
417 |
+
if np.all(~gt):
|
418 |
+
wfm = 0
|
419 |
+
else:
|
420 |
+
wfm = self.cal_wfm(pred, gt)
|
421 |
+
self.weighted_fms.append(wfm)
|
422 |
+
|
423 |
+
def cal_wfm(self, pred: np.ndarray, gt: np.ndarray) -> float:
|
424 |
+
# [Dst,IDXT] = bwdist(dGT);
|
425 |
+
Dst, Idxt = bwdist(gt == 0, return_indices=True)
|
426 |
+
|
427 |
+
# %Pixel dependency
|
428 |
+
# E = abs(FG-dGT);
|
429 |
+
E = np.abs(pred - gt)
|
430 |
+
Et = np.copy(E)
|
431 |
+
Et[gt == 0] = Et[Idxt[0][gt == 0], Idxt[1][gt == 0]]
|
432 |
+
|
433 |
+
# K = fspecial('gaussian',7,5);
|
434 |
+
# EA = imfilter(Et,K);
|
435 |
+
K = self.matlab_style_gauss2D((7, 7), sigma=5)
|
436 |
+
EA = convolve(Et, weights=K, mode="constant", cval=0)
|
437 |
+
# MIN_E_EA = E;
|
438 |
+
# MIN_E_EA(GT & EA<E) = EA(GT & EA<E);
|
439 |
+
MIN_E_EA = np.where(gt & (EA < E), EA, E)
|
440 |
+
|
441 |
+
# %Pixel importance
|
442 |
+
B = np.where(gt == 0, 2 - np.exp(np.log(0.5) / 5 * Dst), np.ones_like(gt))
|
443 |
+
Ew = MIN_E_EA * B
|
444 |
+
|
445 |
+
TPw = np.sum(gt) - np.sum(Ew[gt == 1])
|
446 |
+
FPw = np.sum(Ew[gt == 0])
|
447 |
+
|
448 |
+
|
449 |
+
R = 1 - np.mean(Ew[gt == 1])
|
450 |
+
P = TPw / (TPw + FPw + _EPS)
|
451 |
+
|
452 |
+
# % Q = (1+Beta^2)*(R*P)./(eps+R+(Beta.*P));
|
453 |
+
Q = (1 + self.beta) * R * P / (R + self.beta * P + _EPS)
|
454 |
+
|
455 |
+
return Q
|
456 |
+
|
457 |
+
def matlab_style_gauss2D(self, shape: tuple = (7, 7), sigma: int = 5) -> np.ndarray:
|
458 |
+
"""
|
459 |
+
2D gaussian mask - should give the same result as MATLAB's
|
460 |
+
fspecial('gaussian',[shape],[sigma])
|
461 |
+
"""
|
462 |
+
m, n = [(ss - 1) / 2 for ss in shape]
|
463 |
+
y, x = np.ogrid[-m: m + 1, -n: n + 1]
|
464 |
+
h = np.exp(-(x * x + y * y) / (2 * sigma * sigma))
|
465 |
+
h[h < np.finfo(h.dtype).eps * h.max()] = 0
|
466 |
+
sumh = h.sum()
|
467 |
+
if sumh != 0:
|
468 |
+
h /= sumh
|
469 |
+
return h
|
470 |
+
|
471 |
+
def get_results(self) -> dict:
|
472 |
+
weighted_fm = np.mean(np.array(self.weighted_fms, dtype=_TYPE))
|
473 |
+
return dict(wfm=weighted_fm)
|
474 |
+
|
475 |
+
|
476 |
+
class HCEMeasure(object):
|
477 |
+
def __init__(self):
|
478 |
+
self.hces = []
|
479 |
+
|
480 |
+
def step(self, pred: np.ndarray, gt: np.ndarray, gt_ske):
|
481 |
+
# pred, gt = _prepare_data(pred, gt)
|
482 |
+
|
483 |
+
hce = self.cal_hce(pred, gt, gt_ske)
|
484 |
+
self.hces.append(hce)
|
485 |
+
|
486 |
+
def get_results(self) -> dict:
|
487 |
+
hce = np.mean(np.array(self.hces, _TYPE))
|
488 |
+
return dict(hce=hce)
|
489 |
+
|
490 |
+
|
491 |
+
def cal_hce(self, pred: np.ndarray, gt: np.ndarray, gt_ske: np.ndarray, relax=5, epsilon=2.0) -> float:
|
492 |
+
# Binarize gt
|
493 |
+
if(len(gt.shape)>2):
|
494 |
+
gt = gt[:, :, 0]
|
495 |
+
|
496 |
+
epsilon_gt = 128#(np.amin(gt)+np.amax(gt))/2.0
|
497 |
+
gt = (gt>epsilon_gt).astype(np.uint8)
|
498 |
+
|
499 |
+
# Binarize pred
|
500 |
+
if(len(pred.shape)>2):
|
501 |
+
pred = pred[:, :, 0]
|
502 |
+
epsilon_pred = 128#(np.amin(pred)+np.amax(pred))/2.0
|
503 |
+
pred = (pred>epsilon_pred).astype(np.uint8)
|
504 |
+
|
505 |
+
Union = np.logical_or(gt, pred)
|
506 |
+
TP = np.logical_and(gt, pred)
|
507 |
+
FP = pred - TP
|
508 |
+
FN = gt - TP
|
509 |
+
|
510 |
+
# relax the Union of gt and pred
|
511 |
+
Union_erode = Union.copy()
|
512 |
+
Union_erode = cv2.erode(Union_erode.astype(np.uint8), disk(1), iterations=relax)
|
513 |
+
|
514 |
+
# --- get the relaxed False Positive regions for computing the human efforts in correcting them ---
|
515 |
+
FP_ = np.logical_and(FP, Union_erode) # get the relaxed FP
|
516 |
+
for i in range(0, relax):
|
517 |
+
FP_ = cv2.dilate(FP_.astype(np.uint8), disk(1))
|
518 |
+
FP_ = np.logical_and(FP_, 1-np.logical_or(TP, FN))
|
519 |
+
FP_ = np.logical_and(FP, FP_)
|
520 |
+
|
521 |
+
# --- get the relaxed False Negative regions for computing the human efforts in correcting them ---
|
522 |
+
FN_ = np.logical_and(FN, Union_erode) # preserve the structural components of FN
|
523 |
+
## recover the FN, where pixels are not close to the TP borders
|
524 |
+
for i in range(0, relax):
|
525 |
+
FN_ = cv2.dilate(FN_.astype(np.uint8), disk(1))
|
526 |
+
FN_ = np.logical_and(FN_, 1-np.logical_or(TP, FP))
|
527 |
+
FN_ = np.logical_and(FN, FN_)
|
528 |
+
FN_ = np.logical_or(FN_, np.logical_xor(gt_ske, np.logical_and(TP, gt_ske))) # preserve the structural components of FN
|
529 |
+
|
530 |
+
## 2. =============Find exact polygon control points and independent regions==============
|
531 |
+
## find contours from FP_
|
532 |
+
ctrs_FP, hier_FP = cv2.findContours(FP_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
|
533 |
+
## find control points and independent regions for human correction
|
534 |
+
bdies_FP, indep_cnt_FP = self.filter_bdy_cond(ctrs_FP, FP_, np.logical_or(TP,FN_))
|
535 |
+
## find contours from FN_
|
536 |
+
ctrs_FN, hier_FN = cv2.findContours(FN_.astype(np.uint8), cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
|
537 |
+
## find control points and independent regions for human correction
|
538 |
+
bdies_FN, indep_cnt_FN = self.filter_bdy_cond(ctrs_FN, FN_, 1-np.logical_or(np.logical_or(TP, FP_), FN_))
|
539 |
+
|
540 |
+
poly_FP, poly_FP_len, poly_FP_point_cnt = self.approximate_RDP(bdies_FP, epsilon=epsilon)
|
541 |
+
poly_FN, poly_FN_len, poly_FN_point_cnt = self.approximate_RDP(bdies_FN, epsilon=epsilon)
|
542 |
+
|
543 |
+
# FP_points+FP_indep+FN_points+FN_indep
|
544 |
+
return poly_FP_point_cnt+indep_cnt_FP+poly_FN_point_cnt+indep_cnt_FN
|
545 |
+
|
546 |
+
def filter_bdy_cond(self, bdy_, mask, cond):
|
547 |
+
|
548 |
+
cond = cv2.dilate(cond.astype(np.uint8), disk(1))
|
549 |
+
labels = label(mask) # find the connected regions
|
550 |
+
lbls = np.unique(labels) # the indices of the connected regions
|
551 |
+
indep = np.ones(lbls.shape[0]) # the label of each connected regions
|
552 |
+
indep[0] = 0 # 0 indicate the background region
|
553 |
+
|
554 |
+
boundaries = []
|
555 |
+
h,w = cond.shape[0:2]
|
556 |
+
ind_map = np.zeros((h, w))
|
557 |
+
indep_cnt = 0
|
558 |
+
|
559 |
+
for i in range(0, len(bdy_)):
|
560 |
+
tmp_bdies = []
|
561 |
+
tmp_bdy = []
|
562 |
+
for j in range(0, bdy_[i].shape[0]):
|
563 |
+
r, c = bdy_[i][j,0,1],bdy_[i][j,0,0]
|
564 |
+
|
565 |
+
if(np.sum(cond[r, c])==0 or ind_map[r, c]!=0):
|
566 |
+
if(len(tmp_bdy)>0):
|
567 |
+
tmp_bdies.append(tmp_bdy)
|
568 |
+
tmp_bdy = []
|
569 |
+
continue
|
570 |
+
tmp_bdy.append([c, r])
|
571 |
+
ind_map[r, c] = ind_map[r, c] + 1
|
572 |
+
indep[labels[r, c]] = 0 # indicates part of the boundary of this region needs human correction
|
573 |
+
if(len(tmp_bdy)>0):
|
574 |
+
tmp_bdies.append(tmp_bdy)
|
575 |
+
|
576 |
+
# check if the first and the last boundaries are connected
|
577 |
+
# if yes, invert the first boundary and attach it after the last boundary
|
578 |
+
if(len(tmp_bdies)>1):
|
579 |
+
first_x, first_y = tmp_bdies[0][0]
|
580 |
+
last_x, last_y = tmp_bdies[-1][-1]
|
581 |
+
if((abs(first_x-last_x)==1 and first_y==last_y) or
|
582 |
+
(first_x==last_x and abs(first_y-last_y)==1) or
|
583 |
+
(abs(first_x-last_x)==1 and abs(first_y-last_y)==1)
|
584 |
+
):
|
585 |
+
tmp_bdies[-1].extend(tmp_bdies[0][::-1])
|
586 |
+
del tmp_bdies[0]
|
587 |
+
|
588 |
+
for k in range(0, len(tmp_bdies)):
|
589 |
+
tmp_bdies[k] = np.array(tmp_bdies[k])[:, np.newaxis, :]
|
590 |
+
if(len(tmp_bdies)>0):
|
591 |
+
boundaries.extend(tmp_bdies)
|
592 |
+
|
593 |
+
return boundaries, np.sum(indep)
|
594 |
+
|
595 |
+
# this function approximate each boundary by DP algorithm
|
596 |
+
# https://en.wikipedia.org/wiki/Ramer%E2%80%93Douglas%E2%80%93Peucker_algorithm
|
597 |
+
def approximate_RDP(self, boundaries, epsilon=1.0):
|
598 |
+
|
599 |
+
boundaries_ = []
|
600 |
+
boundaries_len_ = []
|
601 |
+
pixel_cnt_ = 0
|
602 |
+
|
603 |
+
# polygon approximate of each boundary
|
604 |
+
for i in range(0, len(boundaries)):
|
605 |
+
boundaries_.append(cv2.approxPolyDP(boundaries[i], epsilon, False))
|
606 |
+
|
607 |
+
# count the control points number of each boundary and the total control points number of all the boundaries
|
608 |
+
for i in range(0, len(boundaries_)):
|
609 |
+
boundaries_len_.append(len(boundaries_[i]))
|
610 |
+
pixel_cnt_ = pixel_cnt_ + len(boundaries_[i])
|
611 |
+
|
612 |
+
return boundaries_, boundaries_len_, pixel_cnt_
|
BiRefNet_github/evaluation/valid.py
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from inference import inference
|
2 |
+
from evaluation.evaluate import evaluate
|
3 |
+
|
4 |
+
|
5 |
+
def valid(model, data_loader_test, pred_dir, method='tmp_val', testset='DIS-VD', only_S_MAE=True, device=0):
|
6 |
+
model.eval()
|
7 |
+
inference(model, data_loader_test, pred_dir, method, testset, device=device)
|
8 |
+
performance_dict = evaluate(pred_dir, method, testset, only_S_MAE=only_S_MAE, epoch=model.epoch)
|
9 |
+
return performance_dict
|
BiRefNet_github/gen_best_ep.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from glob import glob
|
3 |
+
import numpy as np
|
4 |
+
from config import Config
|
5 |
+
|
6 |
+
|
7 |
+
config = Config()
|
8 |
+
|
9 |
+
eval_txts = sorted(glob('e_results/*_eval.txt'))
|
10 |
+
print('eval_txts:', [_.split(os.sep)[-1] for _ in eval_txts])
|
11 |
+
score_panel = {}
|
12 |
+
sep = '&'
|
13 |
+
metrics = ['sm', 'wfm', 'hce'] # we used HCE for DIS and wFm for others.
|
14 |
+
if 'DIS5K' not in config.task:
|
15 |
+
metrics.remove('hce')
|
16 |
+
|
17 |
+
for metric in metrics:
|
18 |
+
print('Metric:', metric)
|
19 |
+
current_line_nums = []
|
20 |
+
for idx_et, eval_txt in enumerate(eval_txts):
|
21 |
+
with open(eval_txt, 'r') as f:
|
22 |
+
lines = [l for l in f.readlines()[3:] if '.' in l]
|
23 |
+
current_line_nums.append(len(lines))
|
24 |
+
for idx_et, eval_txt in enumerate(eval_txts):
|
25 |
+
with open(eval_txt, 'r') as f:
|
26 |
+
lines = [l for l in f.readlines()[3:] if '.' in l]
|
27 |
+
for idx_line, line in enumerate(lines[:min(current_line_nums)]): # Consist line numbers by the minimal result file.
|
28 |
+
properties = line.strip().strip(sep).split(sep)
|
29 |
+
dataset = properties[0].strip()
|
30 |
+
ckpt = properties[1].strip()
|
31 |
+
if int(ckpt.split('--epoch_')[-1].strip()) < 0:
|
32 |
+
continue
|
33 |
+
targe_idx = {
|
34 |
+
'sm': [5, 2, 2, 5, 2],
|
35 |
+
'wfm': [3, 3, 8, 3, 8],
|
36 |
+
'hce': [7, -1, -1, 7, -1]
|
37 |
+
}[metric][['DIS5K', 'COD', 'HRSOD', 'DIS5K+HRSOD+HRS10K', 'P3M-10k'].index(config.task)]
|
38 |
+
if metric != 'hce':
|
39 |
+
score_sm = float(properties[targe_idx].strip())
|
40 |
+
else:
|
41 |
+
score_sm = int(properties[targe_idx].strip().strip('.'))
|
42 |
+
if idx_et == 0:
|
43 |
+
score_panel[ckpt] = []
|
44 |
+
score_panel[ckpt].append(score_sm)
|
45 |
+
|
46 |
+
metrics_min = ['hce', 'mae']
|
47 |
+
max_or_min = min if metric in metrics_min else max
|
48 |
+
score_max = max_or_min(score_panel.values(), key=lambda x: np.sum(x))
|
49 |
+
|
50 |
+
good_models = []
|
51 |
+
for k, v in score_panel.items():
|
52 |
+
if (np.sum(v) <= np.sum(score_max)) if metric in metrics_min else (np.sum(v) >= np.sum(score_max)):
|
53 |
+
print(k, v)
|
54 |
+
good_models.append(k)
|
55 |
+
|
56 |
+
# Write
|
57 |
+
with open(eval_txt, 'r') as f:
|
58 |
+
lines = f.readlines()
|
59 |
+
info4good_models = lines[:3]
|
60 |
+
metric_names = [m.strip() for m in lines[1].strip().strip('&').split('&')[2:]]
|
61 |
+
testset_mean_values = {metric_name: [] for metric_name in metric_names}
|
62 |
+
for good_model in good_models:
|
63 |
+
for idx_et, eval_txt in enumerate(eval_txts):
|
64 |
+
with open(eval_txt, 'r') as f:
|
65 |
+
lines = f.readlines()
|
66 |
+
for line in lines:
|
67 |
+
if set([good_model]) & set([_.strip() for _ in line.split(sep)]):
|
68 |
+
info4good_models.append(line)
|
69 |
+
metric_scores = [float(m.strip()) for m in line.strip().strip('&').split('&')[2:]]
|
70 |
+
for idx_score, metric_score in enumerate(metric_scores):
|
71 |
+
testset_mean_values[metric_names[idx_score]].append(metric_score)
|
72 |
+
|
73 |
+
if 'DIS5K' in config.task:
|
74 |
+
testset_mean_values_lst = ['{:<4}'.format(int(np.mean(v_lst[:-1]).round())) if name == 'HCE' else '{:.3f}'.format(np.mean(v_lst[:-1])).lstrip('0') for name, v_lst in testset_mean_values.items()] # [:-1] to remove DIS-VD
|
75 |
+
sample_line_for_placing_mean_values = info4good_models[-2]
|
76 |
+
numbers_placed_well = sample_line_for_placing_mean_values.replace(sample_line_for_placing_mean_values.split('&')[1].strip(), 'DIS-TEs').strip().split('&')[3:]
|
77 |
+
for idx_number, (number_placed_well, testset_mean_value) in enumerate(zip(numbers_placed_well, testset_mean_values_lst)):
|
78 |
+
numbers_placed_well[idx_number] = number_placed_well.replace(number_placed_well.strip(), testset_mean_value)
|
79 |
+
testset_mean_line = '&'.join(sample_line_for_placing_mean_values.replace(sample_line_for_placing_mean_values.split('&')[1].strip(), 'DIS-TEs').split('&')[:3] + numbers_placed_well) + '\n'
|
80 |
+
info4good_models.append(testset_mean_line)
|
81 |
+
info4good_models.append(lines[-1])
|
82 |
+
info = ''.join(info4good_models)
|
83 |
+
print(info)
|
84 |
+
with open(os.path.join('e_results', 'eval-{}_best_on_{}.txt'.format(config.task, metric)), 'w') as f:
|
85 |
+
f.write(info + '\n')
|
BiRefNet_github/inference.py
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import argparse
|
3 |
+
from glob import glob
|
4 |
+
from tqdm import tqdm
|
5 |
+
import cv2
|
6 |
+
import torch
|
7 |
+
|
8 |
+
from dataset import MyData
|
9 |
+
from models.birefnet import BiRefNet
|
10 |
+
from utils import save_tensor_img, check_state_dict
|
11 |
+
from config import Config
|
12 |
+
|
13 |
+
|
14 |
+
config = Config()
|
15 |
+
|
16 |
+
|
17 |
+
def inference(model, data_loader_test, pred_root, method, testset, device=0):
|
18 |
+
model_training = model.training
|
19 |
+
if model_training:
|
20 |
+
model.eval()
|
21 |
+
for batch in tqdm(data_loader_test, total=len(data_loader_test)) if 1 or config.verbose_eval else data_loader_test:
|
22 |
+
inputs = batch[0].to(device)
|
23 |
+
# gts = batch[1].to(device)
|
24 |
+
label_paths = batch[-1]
|
25 |
+
with torch.no_grad():
|
26 |
+
scaled_preds = model(inputs)[-1].sigmoid()
|
27 |
+
|
28 |
+
os.makedirs(os.path.join(pred_root, method, testset), exist_ok=True)
|
29 |
+
|
30 |
+
for idx_sample in range(scaled_preds.shape[0]):
|
31 |
+
res = torch.nn.functional.interpolate(
|
32 |
+
scaled_preds[idx_sample].unsqueeze(0),
|
33 |
+
size=cv2.imread(label_paths[idx_sample], cv2.IMREAD_GRAYSCALE).shape[:2],
|
34 |
+
mode='bilinear',
|
35 |
+
align_corners=True
|
36 |
+
)
|
37 |
+
save_tensor_img(res, os.path.join(os.path.join(pred_root, method, testset), label_paths[idx_sample].replace('\\', '/').split('/')[-1])) # test set dir + file name
|
38 |
+
if model_training:
|
39 |
+
model.train()
|
40 |
+
return None
|
41 |
+
|
42 |
+
|
43 |
+
def main(args):
|
44 |
+
# Init model
|
45 |
+
|
46 |
+
device = config.device
|
47 |
+
if args.ckpt_folder:
|
48 |
+
print('Testing with models in {}'.format(args.ckpt_folder))
|
49 |
+
else:
|
50 |
+
print('Testing with model {}'.format(args.ckpt))
|
51 |
+
|
52 |
+
if config.model == 'BiRefNet':
|
53 |
+
model = BiRefNet(bb_pretrained=False)
|
54 |
+
weights_lst = sorted(
|
55 |
+
glob(os.path.join(args.ckpt_folder, '*.pth')) if args.ckpt_folder else [args.ckpt],
|
56 |
+
key=lambda x: int(x.split('epoch_')[-1].split('.pth')[0]),
|
57 |
+
reverse=True
|
58 |
+
)
|
59 |
+
for testset in args.testsets.split('+'):
|
60 |
+
print('>>>> Testset: {}...'.format(testset))
|
61 |
+
data_loader_test = torch.utils.data.DataLoader(
|
62 |
+
dataset=MyData(testset, image_size=config.size, is_train=False),
|
63 |
+
batch_size=config.batch_size_valid, shuffle=False, num_workers=config.num_workers, pin_memory=True
|
64 |
+
)
|
65 |
+
for weights in weights_lst:
|
66 |
+
if int(weights.strip('.pth').split('epoch_')[-1]) % 1 != 0:
|
67 |
+
continue
|
68 |
+
print('\tInferencing {}...'.format(weights))
|
69 |
+
# model.load_state_dict(torch.load(weights, map_location='cpu'))
|
70 |
+
state_dict = torch.load(weights, map_location='cpu')
|
71 |
+
state_dict = check_state_dict(state_dict)
|
72 |
+
model.load_state_dict(state_dict)
|
73 |
+
model = model.to(device)
|
74 |
+
inference(
|
75 |
+
model, data_loader_test=data_loader_test, pred_root=args.pred_root,
|
76 |
+
method='--'.join([w.rstrip('.pth') for w in weights.split(os.sep)[-2:]]),
|
77 |
+
testset=testset, device=config.device
|
78 |
+
)
|
79 |
+
|
80 |
+
|
81 |
+
if __name__ == '__main__':
|
82 |
+
# Parameter from command line
|
83 |
+
parser = argparse.ArgumentParser(description='')
|
84 |
+
parser.add_argument('--ckpt', type=str, help='model folder')
|
85 |
+
parser.add_argument('--ckpt_folder', default=sorted(glob(os.path.join('ckpt', '*')))[-1], type=str, help='model folder')
|
86 |
+
parser.add_argument('--pred_root', default='e_preds', type=str, help='Output folder')
|
87 |
+
parser.add_argument('--testsets',
|
88 |
+
default={
|
89 |
+
'DIS5K': 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4',
|
90 |
+
'COD': 'TE-COD10K+NC4K+TE-CAMO+CHAMELEON',
|
91 |
+
'HRSOD': 'DAVIS-S+TE-HRSOD+TE-UHRSD+TE-DUTS+DUT-OMRON',
|
92 |
+
'DIS5K+HRSOD+HRS10K': 'DIS-VD',
|
93 |
+
'P3M-10k': 'TE-P3M-500-P+TE-P3M-500-NP',
|
94 |
+
'DIS5K-': 'DIS-VD',
|
95 |
+
'COD-': 'TE-COD10K',
|
96 |
+
'SOD-': 'DAVIS-S+TE-HRSOD+TE-UHRSD',
|
97 |
+
}[config.task + ''],
|
98 |
+
type=str,
|
99 |
+
help="Test all sets: , 'DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4'")
|
100 |
+
|
101 |
+
args = parser.parse_args()
|
102 |
+
|
103 |
+
if config.precisionHigh:
|
104 |
+
torch.set_float32_matmul_precision('high')
|
105 |
+
main(args)
|
BiRefNet_github/loss.py
ADDED
@@ -0,0 +1,274 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from torch import nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from torch.autograd import Variable
|
5 |
+
from math import exp
|
6 |
+
from config import Config
|
7 |
+
|
8 |
+
|
9 |
+
class Discriminator(nn.Module):
|
10 |
+
def __init__(self, channels=1, img_size=256):
|
11 |
+
super(Discriminator, self).__init__()
|
12 |
+
|
13 |
+
def discriminator_block(in_filters, out_filters, bn=Config().batch_size > 1):
|
14 |
+
block = [nn.Conv2d(in_filters, out_filters, 3, 2, 1), nn.LeakyReLU(0.2, inplace=True), nn.Dropout2d(0.25)]
|
15 |
+
if bn:
|
16 |
+
block.append(nn.BatchNorm2d(out_filters, 0.8))
|
17 |
+
return block
|
18 |
+
|
19 |
+
self.model = nn.Sequential(
|
20 |
+
*discriminator_block(channels, 16, bn=False),
|
21 |
+
*discriminator_block(16, 32),
|
22 |
+
*discriminator_block(32, 64),
|
23 |
+
*discriminator_block(64, 128),
|
24 |
+
)
|
25 |
+
|
26 |
+
# The height and width of downsampled image
|
27 |
+
ds_size = img_size // 2 ** 4
|
28 |
+
self.adv_layer = nn.Sequential(nn.Linear(128 * ds_size ** 2, 1), nn.Sigmoid())
|
29 |
+
|
30 |
+
def forward(self, img):
|
31 |
+
out = self.model(img)
|
32 |
+
out = out.view(out.shape[0], -1)
|
33 |
+
validity = self.adv_layer(out)
|
34 |
+
|
35 |
+
return validity
|
36 |
+
|
37 |
+
|
38 |
+
class ContourLoss(torch.nn.Module):
|
39 |
+
def __init__(self):
|
40 |
+
super(ContourLoss, self).__init__()
|
41 |
+
|
42 |
+
def forward(self, pred, target, weight=10):
|
43 |
+
'''
|
44 |
+
target, pred: tensor of shape (B, C, H, W), where target[:,:,region_in_contour] == 1,
|
45 |
+
target[:,:,region_out_contour] == 0.
|
46 |
+
weight: scalar, length term weight.
|
47 |
+
'''
|
48 |
+
# length term
|
49 |
+
delta_r = pred[:,:,1:,:] - pred[:,:,:-1,:] # horizontal gradient (B, C, H-1, W)
|
50 |
+
delta_c = pred[:,:,:,1:] - pred[:,:,:,:-1] # vertical gradient (B, C, H, W-1)
|
51 |
+
|
52 |
+
delta_r = delta_r[:,:,1:,:-2]**2 # (B, C, H-2, W-2)
|
53 |
+
delta_c = delta_c[:,:,:-2,1:]**2 # (B, C, H-2, W-2)
|
54 |
+
delta_pred = torch.abs(delta_r + delta_c)
|
55 |
+
|
56 |
+
epsilon = 1e-8 # where is a parameter to avoid square root is zero in practice.
|
57 |
+
length = torch.mean(torch.sqrt(delta_pred + epsilon)) # eq.(11) in the paper, mean is used instead of sum.
|
58 |
+
|
59 |
+
c_in = torch.ones_like(pred)
|
60 |
+
c_out = torch.zeros_like(pred)
|
61 |
+
|
62 |
+
region_in = torch.mean( pred * (target - c_in )**2 ) # equ.(12) in the paper, mean is used instead of sum.
|
63 |
+
region_out = torch.mean( (1-pred) * (target - c_out)**2 )
|
64 |
+
region = region_in + region_out
|
65 |
+
|
66 |
+
loss = weight * length + region
|
67 |
+
|
68 |
+
return loss
|
69 |
+
|
70 |
+
|
71 |
+
class IoULoss(torch.nn.Module):
|
72 |
+
def __init__(self):
|
73 |
+
super(IoULoss, self).__init__()
|
74 |
+
|
75 |
+
def forward(self, pred, target):
|
76 |
+
b = pred.shape[0]
|
77 |
+
IoU = 0.0
|
78 |
+
for i in range(0, b):
|
79 |
+
# compute the IoU of the foreground
|
80 |
+
Iand1 = torch.sum(target[i, :, :, :] * pred[i, :, :, :])
|
81 |
+
Ior1 = torch.sum(target[i, :, :, :]) + torch.sum(pred[i, :, :, :]) - Iand1
|
82 |
+
IoU1 = Iand1 / Ior1
|
83 |
+
# IoU loss is (1-IoU1)
|
84 |
+
IoU = IoU + (1-IoU1)
|
85 |
+
# return IoU/b
|
86 |
+
return IoU
|
87 |
+
|
88 |
+
|
89 |
+
class StructureLoss(torch.nn.Module):
|
90 |
+
def __init__(self):
|
91 |
+
super(StructureLoss, self).__init__()
|
92 |
+
|
93 |
+
def forward(self, pred, target):
|
94 |
+
weit = 1+5*torch.abs(F.avg_pool2d(target, kernel_size=31, stride=1, padding=15)-target)
|
95 |
+
wbce = F.binary_cross_entropy_with_logits(pred, target, reduction='none')
|
96 |
+
wbce = (weit*wbce).sum(dim=(2,3))/weit.sum(dim=(2,3))
|
97 |
+
|
98 |
+
pred = torch.sigmoid(pred)
|
99 |
+
inter = ((pred * target) * weit).sum(dim=(2, 3))
|
100 |
+
union = ((pred + target) * weit).sum(dim=(2, 3))
|
101 |
+
wiou = 1-(inter+1)/(union-inter+1)
|
102 |
+
|
103 |
+
return (wbce+wiou).mean()
|
104 |
+
|
105 |
+
|
106 |
+
class PatchIoULoss(torch.nn.Module):
|
107 |
+
def __init__(self):
|
108 |
+
super(PatchIoULoss, self).__init__()
|
109 |
+
self.iou_loss = IoULoss()
|
110 |
+
|
111 |
+
def forward(self, pred, target):
|
112 |
+
win_y, win_x = 64, 64
|
113 |
+
iou_loss = 0.
|
114 |
+
for anchor_y in range(0, target.shape[0], win_y):
|
115 |
+
for anchor_x in range(0, target.shape[1], win_y):
|
116 |
+
patch_pred = pred[:, :, anchor_y:anchor_y+win_y, anchor_x:anchor_x+win_x]
|
117 |
+
patch_target = target[:, :, anchor_y:anchor_y+win_y, anchor_x:anchor_x+win_x]
|
118 |
+
patch_iou_loss = self.iou_loss(patch_pred, patch_target)
|
119 |
+
iou_loss += patch_iou_loss
|
120 |
+
return iou_loss
|
121 |
+
|
122 |
+
|
123 |
+
class ThrReg_loss(torch.nn.Module):
|
124 |
+
def __init__(self):
|
125 |
+
super(ThrReg_loss, self).__init__()
|
126 |
+
|
127 |
+
def forward(self, pred, gt=None):
|
128 |
+
return torch.mean(1 - ((pred - 0) ** 2 + (pred - 1) ** 2))
|
129 |
+
|
130 |
+
|
131 |
+
class ClsLoss(nn.Module):
|
132 |
+
"""
|
133 |
+
Auxiliary classification loss for each refined class output.
|
134 |
+
"""
|
135 |
+
def __init__(self):
|
136 |
+
super(ClsLoss, self).__init__()
|
137 |
+
self.config = Config()
|
138 |
+
self.lambdas_cls = self.config.lambdas_cls
|
139 |
+
|
140 |
+
self.criterions_last = {
|
141 |
+
'ce': nn.CrossEntropyLoss()
|
142 |
+
}
|
143 |
+
|
144 |
+
def forward(self, preds, gt):
|
145 |
+
loss = 0.
|
146 |
+
for _, pred_lvl in enumerate(preds):
|
147 |
+
if pred_lvl is None:
|
148 |
+
continue
|
149 |
+
for criterion_name, criterion in self.criterions_last.items():
|
150 |
+
loss += criterion(pred_lvl, gt) * self.lambdas_cls[criterion_name]
|
151 |
+
return loss
|
152 |
+
|
153 |
+
|
154 |
+
class PixLoss(nn.Module):
|
155 |
+
"""
|
156 |
+
Pixel loss for each refined map output.
|
157 |
+
"""
|
158 |
+
def __init__(self):
|
159 |
+
super(PixLoss, self).__init__()
|
160 |
+
self.config = Config()
|
161 |
+
self.lambdas_pix_last = self.config.lambdas_pix_last
|
162 |
+
|
163 |
+
self.criterions_last = {}
|
164 |
+
if 'bce' in self.lambdas_pix_last and self.lambdas_pix_last['bce']:
|
165 |
+
self.criterions_last['bce'] = nn.BCELoss() if not self.config.use_fp16 else nn.BCEWithLogitsLoss()
|
166 |
+
if 'iou' in self.lambdas_pix_last and self.lambdas_pix_last['iou']:
|
167 |
+
self.criterions_last['iou'] = IoULoss()
|
168 |
+
if 'iou_patch' in self.lambdas_pix_last and self.lambdas_pix_last['iou_patch']:
|
169 |
+
self.criterions_last['iou_patch'] = PatchIoULoss()
|
170 |
+
if 'ssim' in self.lambdas_pix_last and self.lambdas_pix_last['ssim']:
|
171 |
+
self.criterions_last['ssim'] = SSIMLoss()
|
172 |
+
if 'mse' in self.lambdas_pix_last and self.lambdas_pix_last['mse']:
|
173 |
+
self.criterions_last['mse'] = nn.MSELoss()
|
174 |
+
if 'reg' in self.lambdas_pix_last and self.lambdas_pix_last['reg']:
|
175 |
+
self.criterions_last['reg'] = ThrReg_loss()
|
176 |
+
if 'cnt' in self.lambdas_pix_last and self.lambdas_pix_last['cnt']:
|
177 |
+
self.criterions_last['cnt'] = ContourLoss()
|
178 |
+
if 'structure' in self.lambdas_pix_last and self.lambdas_pix_last['structure']:
|
179 |
+
self.criterions_last['structure'] = StructureLoss()
|
180 |
+
|
181 |
+
def forward(self, scaled_preds, gt):
|
182 |
+
loss = 0.
|
183 |
+
criterions_embedded_with_sigmoid = ['structure', ] + ['bce'] if self.config.use_fp16 else []
|
184 |
+
for _, pred_lvl in enumerate(scaled_preds):
|
185 |
+
if pred_lvl.shape != gt.shape:
|
186 |
+
pred_lvl = nn.functional.interpolate(pred_lvl, size=gt.shape[2:], mode='bilinear', align_corners=True)
|
187 |
+
for criterion_name, criterion in self.criterions_last.items():
|
188 |
+
_loss = criterion(pred_lvl.sigmoid() if criterion_name not in criterions_embedded_with_sigmoid else pred_lvl, gt) * self.lambdas_pix_last[criterion_name]
|
189 |
+
loss += _loss
|
190 |
+
# print(criterion_name, _loss.item())
|
191 |
+
return loss
|
192 |
+
|
193 |
+
|
194 |
+
class SSIMLoss(torch.nn.Module):
|
195 |
+
def __init__(self, window_size=11, size_average=True):
|
196 |
+
super(SSIMLoss, self).__init__()
|
197 |
+
self.window_size = window_size
|
198 |
+
self.size_average = size_average
|
199 |
+
self.channel = 1
|
200 |
+
self.window = create_window(window_size, self.channel)
|
201 |
+
|
202 |
+
def forward(self, img1, img2):
|
203 |
+
(_, channel, _, _) = img1.size()
|
204 |
+
if channel == self.channel and self.window.data.type() == img1.data.type():
|
205 |
+
window = self.window
|
206 |
+
else:
|
207 |
+
window = create_window(self.window_size, channel)
|
208 |
+
if img1.is_cuda:
|
209 |
+
window = window.cuda(img1.get_device())
|
210 |
+
window = window.type_as(img1)
|
211 |
+
self.window = window
|
212 |
+
self.channel = channel
|
213 |
+
return 1 - _ssim(img1, img2, window, self.window_size, channel, self.size_average)
|
214 |
+
|
215 |
+
|
216 |
+
def gaussian(window_size, sigma):
|
217 |
+
gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
|
218 |
+
return gauss/gauss.sum()
|
219 |
+
|
220 |
+
|
221 |
+
def create_window(window_size, channel):
|
222 |
+
_1D_window = gaussian(window_size, 1.5).unsqueeze(1)
|
223 |
+
_2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0)
|
224 |
+
window = Variable(_2D_window.expand(channel, 1, window_size, window_size).contiguous())
|
225 |
+
return window
|
226 |
+
|
227 |
+
|
228 |
+
def _ssim(img1, img2, window, window_size, channel, size_average=True):
|
229 |
+
mu1 = F.conv2d(img1, window, padding = window_size//2, groups=channel)
|
230 |
+
mu2 = F.conv2d(img2, window, padding = window_size//2, groups=channel)
|
231 |
+
|
232 |
+
mu1_sq = mu1.pow(2)
|
233 |
+
mu2_sq = mu2.pow(2)
|
234 |
+
mu1_mu2 = mu1*mu2
|
235 |
+
|
236 |
+
sigma1_sq = F.conv2d(img1*img1, window, padding=window_size//2, groups=channel) - mu1_sq
|
237 |
+
sigma2_sq = F.conv2d(img2*img2, window, padding=window_size//2, groups=channel) - mu2_sq
|
238 |
+
sigma12 = F.conv2d(img1*img2, window, padding=window_size//2, groups=channel) - mu1_mu2
|
239 |
+
|
240 |
+
C1 = 0.01**2
|
241 |
+
C2 = 0.03**2
|
242 |
+
|
243 |
+
ssim_map = ((2*mu1_mu2 + C1)*(2*sigma12 + C2))/((mu1_sq + mu2_sq + C1)*(sigma1_sq + sigma2_sq + C2))
|
244 |
+
|
245 |
+
if size_average:
|
246 |
+
return ssim_map.mean()
|
247 |
+
else:
|
248 |
+
return ssim_map.mean(1).mean(1).mean(1)
|
249 |
+
|
250 |
+
|
251 |
+
def SSIM(x, y):
|
252 |
+
C1 = 0.01 ** 2
|
253 |
+
C2 = 0.03 ** 2
|
254 |
+
|
255 |
+
mu_x = nn.AvgPool2d(3, 1, 1)(x)
|
256 |
+
mu_y = nn.AvgPool2d(3, 1, 1)(y)
|
257 |
+
mu_x_mu_y = mu_x * mu_y
|
258 |
+
mu_x_sq = mu_x.pow(2)
|
259 |
+
mu_y_sq = mu_y.pow(2)
|
260 |
+
|
261 |
+
sigma_x = nn.AvgPool2d(3, 1, 1)(x * x) - mu_x_sq
|
262 |
+
sigma_y = nn.AvgPool2d(3, 1, 1)(y * y) - mu_y_sq
|
263 |
+
sigma_xy = nn.AvgPool2d(3, 1, 1)(x * y) - mu_x_mu_y
|
264 |
+
|
265 |
+
SSIM_n = (2 * mu_x_mu_y + C1) * (2 * sigma_xy + C2)
|
266 |
+
SSIM_d = (mu_x_sq + mu_y_sq + C1) * (sigma_x + sigma_y + C2)
|
267 |
+
SSIM = SSIM_n / SSIM_d
|
268 |
+
|
269 |
+
return torch.clamp((1 - SSIM) / 2, 0, 1)
|
270 |
+
|
271 |
+
|
272 |
+
def saliency_structure_consistency(x, y):
|
273 |
+
ssim = torch.mean(SSIM(x,y))
|
274 |
+
return ssim
|
BiRefNet_github/make_a_copy.sh
ADDED
@@ -0,0 +1,18 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Set dst repo here.
|
3 |
+
repo=$1
|
4 |
+
mkdir ../${repo}
|
5 |
+
mkdir ../${repo}/evaluation
|
6 |
+
mkdir ../${repo}/models
|
7 |
+
mkdir ../${repo}/models/backbones
|
8 |
+
mkdir ../${repo}/models/modules
|
9 |
+
mkdir ../${repo}/models/refinement
|
10 |
+
|
11 |
+
cp ./*.sh ../${repo}
|
12 |
+
cp ./*.py ../${repo}
|
13 |
+
cp ./evaluation/*.py ../${repo}/evaluation
|
14 |
+
cp ./models/*.py ../${repo}/models
|
15 |
+
cp ./models/backbones/*.py ../${repo}/models/backbones
|
16 |
+
cp ./models/modules/*.py ../${repo}/models/modules
|
17 |
+
cp ./models/refinement/*.py ../${repo}/models/refinement
|
18 |
+
cp -r ./.git* ../${repo}
|
BiRefNet_github/models/backbones/build_backbone.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from collections import OrderedDict
|
4 |
+
from torchvision.models import vgg16, vgg16_bn, VGG16_Weights, VGG16_BN_Weights, resnet50, ResNet50_Weights
|
5 |
+
from models.backbones.pvt_v2 import pvt_v2_b0, pvt_v2_b1, pvt_v2_b2, pvt_v2_b5
|
6 |
+
from models.backbones.swin_v1 import swin_v1_t, swin_v1_s, swin_v1_b, swin_v1_l
|
7 |
+
from config import Config
|
8 |
+
|
9 |
+
|
10 |
+
config = Config()
|
11 |
+
|
12 |
+
def build_backbone(bb_name, pretrained=True, params_settings=''):
|
13 |
+
if bb_name == 'vgg16':
|
14 |
+
bb_net = list(vgg16(pretrained=VGG16_Weights.DEFAULT if pretrained else None).children())[0]
|
15 |
+
bb = nn.Sequential(OrderedDict({'conv1': bb_net[:4], 'conv2': bb_net[4:9], 'conv3': bb_net[9:16], 'conv4': bb_net[16:23]}))
|
16 |
+
elif bb_name == 'vgg16bn':
|
17 |
+
bb_net = list(vgg16_bn(pretrained=VGG16_BN_Weights.DEFAULT if pretrained else None).children())[0]
|
18 |
+
bb = nn.Sequential(OrderedDict({'conv1': bb_net[:6], 'conv2': bb_net[6:13], 'conv3': bb_net[13:23], 'conv4': bb_net[23:33]}))
|
19 |
+
elif bb_name == 'resnet50':
|
20 |
+
bb_net = list(resnet50(pretrained=ResNet50_Weights.DEFAULT if pretrained else None).children())
|
21 |
+
bb = nn.Sequential(OrderedDict({'conv1': nn.Sequential(*bb_net[0:3]), 'conv2': bb_net[4], 'conv3': bb_net[5], 'conv4': bb_net[6]}))
|
22 |
+
else:
|
23 |
+
bb = eval('{}({})'.format(bb_name, params_settings))
|
24 |
+
if pretrained:
|
25 |
+
bb = load_weights(bb, bb_name)
|
26 |
+
return bb
|
27 |
+
|
28 |
+
def load_weights(model, model_name):
|
29 |
+
save_model = torch.load(config.weights[model_name], map_location='cpu')
|
30 |
+
model_dict = model.state_dict()
|
31 |
+
state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model.items() if k in model_dict.keys()}
|
32 |
+
# to ignore the weights with mismatched size when I modify the backbone itself.
|
33 |
+
if not state_dict:
|
34 |
+
save_model_keys = list(save_model.keys())
|
35 |
+
sub_item = save_model_keys[0] if len(save_model_keys) == 1 else None
|
36 |
+
state_dict = {k: v if v.size() == model_dict[k].size() else model_dict[k] for k, v in save_model[sub_item].items() if k in model_dict.keys()}
|
37 |
+
if not state_dict or not sub_item:
|
38 |
+
print('Weights are not successully loaded. Check the state dict of weights file.')
|
39 |
+
return None
|
40 |
+
else:
|
41 |
+
print('Found correct weights in the "{}" item of loaded state_dict.'.format(sub_item))
|
42 |
+
model_dict.update(state_dict)
|
43 |
+
model.load_state_dict(model_dict)
|
44 |
+
return model
|
BiRefNet_github/models/backbones/pvt_v2.py
ADDED
@@ -0,0 +1,435 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from functools import partial
|
4 |
+
|
5 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
6 |
+
from timm.models.registry import register_model
|
7 |
+
|
8 |
+
import math
|
9 |
+
|
10 |
+
from config import Config
|
11 |
+
|
12 |
+
config = Config()
|
13 |
+
|
14 |
+
class Mlp(nn.Module):
|
15 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
16 |
+
super().__init__()
|
17 |
+
out_features = out_features or in_features
|
18 |
+
hidden_features = hidden_features or in_features
|
19 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
20 |
+
self.dwconv = DWConv(hidden_features)
|
21 |
+
self.act = act_layer()
|
22 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
23 |
+
self.drop = nn.Dropout(drop)
|
24 |
+
|
25 |
+
self.apply(self._init_weights)
|
26 |
+
|
27 |
+
def _init_weights(self, m):
|
28 |
+
if isinstance(m, nn.Linear):
|
29 |
+
trunc_normal_(m.weight, std=.02)
|
30 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
31 |
+
nn.init.constant_(m.bias, 0)
|
32 |
+
elif isinstance(m, nn.LayerNorm):
|
33 |
+
nn.init.constant_(m.bias, 0)
|
34 |
+
nn.init.constant_(m.weight, 1.0)
|
35 |
+
elif isinstance(m, nn.Conv2d):
|
36 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
37 |
+
fan_out //= m.groups
|
38 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
39 |
+
if m.bias is not None:
|
40 |
+
m.bias.data.zero_()
|
41 |
+
|
42 |
+
def forward(self, x, H, W):
|
43 |
+
x = self.fc1(x)
|
44 |
+
x = self.dwconv(x, H, W)
|
45 |
+
x = self.act(x)
|
46 |
+
x = self.drop(x)
|
47 |
+
x = self.fc2(x)
|
48 |
+
x = self.drop(x)
|
49 |
+
return x
|
50 |
+
|
51 |
+
|
52 |
+
class Attention(nn.Module):
|
53 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
|
54 |
+
super().__init__()
|
55 |
+
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
56 |
+
|
57 |
+
self.dim = dim
|
58 |
+
self.num_heads = num_heads
|
59 |
+
head_dim = dim // num_heads
|
60 |
+
self.scale = qk_scale or head_dim ** -0.5
|
61 |
+
|
62 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
63 |
+
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
64 |
+
self.attn_drop_prob = attn_drop
|
65 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
66 |
+
self.proj = nn.Linear(dim, dim)
|
67 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
68 |
+
|
69 |
+
self.sr_ratio = sr_ratio
|
70 |
+
if sr_ratio > 1:
|
71 |
+
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
72 |
+
self.norm = nn.LayerNorm(dim)
|
73 |
+
|
74 |
+
self.apply(self._init_weights)
|
75 |
+
|
76 |
+
def _init_weights(self, m):
|
77 |
+
if isinstance(m, nn.Linear):
|
78 |
+
trunc_normal_(m.weight, std=.02)
|
79 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
80 |
+
nn.init.constant_(m.bias, 0)
|
81 |
+
elif isinstance(m, nn.LayerNorm):
|
82 |
+
nn.init.constant_(m.bias, 0)
|
83 |
+
nn.init.constant_(m.weight, 1.0)
|
84 |
+
elif isinstance(m, nn.Conv2d):
|
85 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
86 |
+
fan_out //= m.groups
|
87 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
88 |
+
if m.bias is not None:
|
89 |
+
m.bias.data.zero_()
|
90 |
+
|
91 |
+
def forward(self, x, H, W):
|
92 |
+
B, N, C = x.shape
|
93 |
+
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
94 |
+
|
95 |
+
if self.sr_ratio > 1:
|
96 |
+
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
97 |
+
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
98 |
+
x_ = self.norm(x_)
|
99 |
+
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
100 |
+
else:
|
101 |
+
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
102 |
+
k, v = kv[0], kv[1]
|
103 |
+
|
104 |
+
if config.SDPA_enabled:
|
105 |
+
x = torch.nn.functional.scaled_dot_product_attention(
|
106 |
+
q, k, v,
|
107 |
+
attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
|
108 |
+
).transpose(1, 2).reshape(B, N, C)
|
109 |
+
else:
|
110 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
111 |
+
attn = attn.softmax(dim=-1)
|
112 |
+
attn = self.attn_drop(attn)
|
113 |
+
|
114 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
115 |
+
x = self.proj(x)
|
116 |
+
x = self.proj_drop(x)
|
117 |
+
|
118 |
+
return x
|
119 |
+
|
120 |
+
|
121 |
+
class Block(nn.Module):
|
122 |
+
|
123 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
124 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
|
125 |
+
super().__init__()
|
126 |
+
self.norm1 = norm_layer(dim)
|
127 |
+
self.attn = Attention(
|
128 |
+
dim,
|
129 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
130 |
+
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
|
131 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
132 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
133 |
+
self.norm2 = norm_layer(dim)
|
134 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
135 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
136 |
+
|
137 |
+
self.apply(self._init_weights)
|
138 |
+
|
139 |
+
def _init_weights(self, m):
|
140 |
+
if isinstance(m, nn.Linear):
|
141 |
+
trunc_normal_(m.weight, std=.02)
|
142 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
143 |
+
nn.init.constant_(m.bias, 0)
|
144 |
+
elif isinstance(m, nn.LayerNorm):
|
145 |
+
nn.init.constant_(m.bias, 0)
|
146 |
+
nn.init.constant_(m.weight, 1.0)
|
147 |
+
elif isinstance(m, nn.Conv2d):
|
148 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
149 |
+
fan_out //= m.groups
|
150 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
151 |
+
if m.bias is not None:
|
152 |
+
m.bias.data.zero_()
|
153 |
+
|
154 |
+
def forward(self, x, H, W):
|
155 |
+
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
156 |
+
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
157 |
+
|
158 |
+
return x
|
159 |
+
|
160 |
+
|
161 |
+
class OverlapPatchEmbed(nn.Module):
|
162 |
+
""" Image to Patch Embedding
|
163 |
+
"""
|
164 |
+
|
165 |
+
def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
|
166 |
+
super().__init__()
|
167 |
+
img_size = to_2tuple(img_size)
|
168 |
+
patch_size = to_2tuple(patch_size)
|
169 |
+
|
170 |
+
self.img_size = img_size
|
171 |
+
self.patch_size = patch_size
|
172 |
+
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
173 |
+
self.num_patches = self.H * self.W
|
174 |
+
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
|
175 |
+
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
176 |
+
self.norm = nn.LayerNorm(embed_dim)
|
177 |
+
|
178 |
+
self.apply(self._init_weights)
|
179 |
+
|
180 |
+
def _init_weights(self, m):
|
181 |
+
if isinstance(m, nn.Linear):
|
182 |
+
trunc_normal_(m.weight, std=.02)
|
183 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
184 |
+
nn.init.constant_(m.bias, 0)
|
185 |
+
elif isinstance(m, nn.LayerNorm):
|
186 |
+
nn.init.constant_(m.bias, 0)
|
187 |
+
nn.init.constant_(m.weight, 1.0)
|
188 |
+
elif isinstance(m, nn.Conv2d):
|
189 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
190 |
+
fan_out //= m.groups
|
191 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
192 |
+
if m.bias is not None:
|
193 |
+
m.bias.data.zero_()
|
194 |
+
|
195 |
+
def forward(self, x):
|
196 |
+
x = self.proj(x)
|
197 |
+
_, _, H, W = x.shape
|
198 |
+
x = x.flatten(2).transpose(1, 2)
|
199 |
+
x = self.norm(x)
|
200 |
+
|
201 |
+
return x, H, W
|
202 |
+
|
203 |
+
|
204 |
+
class PyramidVisionTransformerImpr(nn.Module):
|
205 |
+
def __init__(self, img_size=224, patch_size=16, in_channels=3, num_classes=1000, embed_dims=[64, 128, 256, 512],
|
206 |
+
num_heads=[1, 2, 4, 8], mlp_ratios=[4, 4, 4, 4], qkv_bias=False, qk_scale=None, drop_rate=0.,
|
207 |
+
attn_drop_rate=0., drop_path_rate=0., norm_layer=nn.LayerNorm,
|
208 |
+
depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1]):
|
209 |
+
super().__init__()
|
210 |
+
self.num_classes = num_classes
|
211 |
+
self.depths = depths
|
212 |
+
|
213 |
+
# patch_embed
|
214 |
+
self.patch_embed1 = OverlapPatchEmbed(img_size=img_size, patch_size=7, stride=4, in_channels=in_channels,
|
215 |
+
embed_dim=embed_dims[0])
|
216 |
+
self.patch_embed2 = OverlapPatchEmbed(img_size=img_size // 4, patch_size=3, stride=2, in_channels=embed_dims[0],
|
217 |
+
embed_dim=embed_dims[1])
|
218 |
+
self.patch_embed3 = OverlapPatchEmbed(img_size=img_size // 8, patch_size=3, stride=2, in_channels=embed_dims[1],
|
219 |
+
embed_dim=embed_dims[2])
|
220 |
+
self.patch_embed4 = OverlapPatchEmbed(img_size=img_size // 16, patch_size=3, stride=2, in_channels=embed_dims[2],
|
221 |
+
embed_dim=embed_dims[3])
|
222 |
+
|
223 |
+
# transformer encoder
|
224 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
225 |
+
cur = 0
|
226 |
+
self.block1 = nn.ModuleList([Block(
|
227 |
+
dim=embed_dims[0], num_heads=num_heads[0], mlp_ratio=mlp_ratios[0], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
228 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
229 |
+
sr_ratio=sr_ratios[0])
|
230 |
+
for i in range(depths[0])])
|
231 |
+
self.norm1 = norm_layer(embed_dims[0])
|
232 |
+
|
233 |
+
cur += depths[0]
|
234 |
+
self.block2 = nn.ModuleList([Block(
|
235 |
+
dim=embed_dims[1], num_heads=num_heads[1], mlp_ratio=mlp_ratios[1], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
236 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
237 |
+
sr_ratio=sr_ratios[1])
|
238 |
+
for i in range(depths[1])])
|
239 |
+
self.norm2 = norm_layer(embed_dims[1])
|
240 |
+
|
241 |
+
cur += depths[1]
|
242 |
+
self.block3 = nn.ModuleList([Block(
|
243 |
+
dim=embed_dims[2], num_heads=num_heads[2], mlp_ratio=mlp_ratios[2], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
244 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
245 |
+
sr_ratio=sr_ratios[2])
|
246 |
+
for i in range(depths[2])])
|
247 |
+
self.norm3 = norm_layer(embed_dims[2])
|
248 |
+
|
249 |
+
cur += depths[2]
|
250 |
+
self.block4 = nn.ModuleList([Block(
|
251 |
+
dim=embed_dims[3], num_heads=num_heads[3], mlp_ratio=mlp_ratios[3], qkv_bias=qkv_bias, qk_scale=qk_scale,
|
252 |
+
drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[cur + i], norm_layer=norm_layer,
|
253 |
+
sr_ratio=sr_ratios[3])
|
254 |
+
for i in range(depths[3])])
|
255 |
+
self.norm4 = norm_layer(embed_dims[3])
|
256 |
+
|
257 |
+
# classification head
|
258 |
+
# self.head = nn.Linear(embed_dims[3], num_classes) if num_classes > 0 else nn.Identity()
|
259 |
+
|
260 |
+
self.apply(self._init_weights)
|
261 |
+
|
262 |
+
def _init_weights(self, m):
|
263 |
+
if isinstance(m, nn.Linear):
|
264 |
+
trunc_normal_(m.weight, std=.02)
|
265 |
+
if isinstance(m, nn.Linear) and m.bias is not None:
|
266 |
+
nn.init.constant_(m.bias, 0)
|
267 |
+
elif isinstance(m, nn.LayerNorm):
|
268 |
+
nn.init.constant_(m.bias, 0)
|
269 |
+
nn.init.constant_(m.weight, 1.0)
|
270 |
+
elif isinstance(m, nn.Conv2d):
|
271 |
+
fan_out = m.kernel_size[0] * m.kernel_size[1] * m.out_channels
|
272 |
+
fan_out //= m.groups
|
273 |
+
m.weight.data.normal_(0, math.sqrt(2.0 / fan_out))
|
274 |
+
if m.bias is not None:
|
275 |
+
m.bias.data.zero_()
|
276 |
+
|
277 |
+
def init_weights(self, pretrained=None):
|
278 |
+
if isinstance(pretrained, str):
|
279 |
+
logger = 1
|
280 |
+
#load_checkpoint(self, pretrained, map_location='cpu', strict=False, logger=logger)
|
281 |
+
|
282 |
+
def reset_drop_path(self, drop_path_rate):
|
283 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(self.depths))]
|
284 |
+
cur = 0
|
285 |
+
for i in range(self.depths[0]):
|
286 |
+
self.block1[i].drop_path.drop_prob = dpr[cur + i]
|
287 |
+
|
288 |
+
cur += self.depths[0]
|
289 |
+
for i in range(self.depths[1]):
|
290 |
+
self.block2[i].drop_path.drop_prob = dpr[cur + i]
|
291 |
+
|
292 |
+
cur += self.depths[1]
|
293 |
+
for i in range(self.depths[2]):
|
294 |
+
self.block3[i].drop_path.drop_prob = dpr[cur + i]
|
295 |
+
|
296 |
+
cur += self.depths[2]
|
297 |
+
for i in range(self.depths[3]):
|
298 |
+
self.block4[i].drop_path.drop_prob = dpr[cur + i]
|
299 |
+
|
300 |
+
def freeze_patch_emb(self):
|
301 |
+
self.patch_embed1.requires_grad = False
|
302 |
+
|
303 |
+
@torch.jit.ignore
|
304 |
+
def no_weight_decay(self):
|
305 |
+
return {'pos_embed1', 'pos_embed2', 'pos_embed3', 'pos_embed4', 'cls_token'} # has pos_embed may be better
|
306 |
+
|
307 |
+
def get_classifier(self):
|
308 |
+
return self.head
|
309 |
+
|
310 |
+
def reset_classifier(self, num_classes, global_pool=''):
|
311 |
+
self.num_classes = num_classes
|
312 |
+
self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity()
|
313 |
+
|
314 |
+
def forward_features(self, x):
|
315 |
+
B = x.shape[0]
|
316 |
+
outs = []
|
317 |
+
|
318 |
+
# stage 1
|
319 |
+
x, H, W = self.patch_embed1(x)
|
320 |
+
for i, blk in enumerate(self.block1):
|
321 |
+
x = blk(x, H, W)
|
322 |
+
x = self.norm1(x)
|
323 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
324 |
+
outs.append(x)
|
325 |
+
|
326 |
+
# stage 2
|
327 |
+
x, H, W = self.patch_embed2(x)
|
328 |
+
for i, blk in enumerate(self.block2):
|
329 |
+
x = blk(x, H, W)
|
330 |
+
x = self.norm2(x)
|
331 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
332 |
+
outs.append(x)
|
333 |
+
|
334 |
+
# stage 3
|
335 |
+
x, H, W = self.patch_embed3(x)
|
336 |
+
for i, blk in enumerate(self.block3):
|
337 |
+
x = blk(x, H, W)
|
338 |
+
x = self.norm3(x)
|
339 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
340 |
+
outs.append(x)
|
341 |
+
|
342 |
+
# stage 4
|
343 |
+
x, H, W = self.patch_embed4(x)
|
344 |
+
for i, blk in enumerate(self.block4):
|
345 |
+
x = blk(x, H, W)
|
346 |
+
x = self.norm4(x)
|
347 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
348 |
+
outs.append(x)
|
349 |
+
|
350 |
+
return outs
|
351 |
+
|
352 |
+
# return x.mean(dim=1)
|
353 |
+
|
354 |
+
def forward(self, x):
|
355 |
+
x = self.forward_features(x)
|
356 |
+
# x = self.head(x)
|
357 |
+
|
358 |
+
return x
|
359 |
+
|
360 |
+
|
361 |
+
class DWConv(nn.Module):
|
362 |
+
def __init__(self, dim=768):
|
363 |
+
super(DWConv, self).__init__()
|
364 |
+
self.dwconv = nn.Conv2d(dim, dim, 3, 1, 1, bias=True, groups=dim)
|
365 |
+
|
366 |
+
def forward(self, x, H, W):
|
367 |
+
B, N, C = x.shape
|
368 |
+
x = x.transpose(1, 2).view(B, C, H, W).contiguous()
|
369 |
+
x = self.dwconv(x)
|
370 |
+
x = x.flatten(2).transpose(1, 2)
|
371 |
+
|
372 |
+
return x
|
373 |
+
|
374 |
+
|
375 |
+
def _conv_filter(state_dict, patch_size=16):
|
376 |
+
""" convert patch embedding weight from manual patchify + linear proj to conv"""
|
377 |
+
out_dict = {}
|
378 |
+
for k, v in state_dict.items():
|
379 |
+
if 'patch_embed.proj.weight' in k:
|
380 |
+
v = v.reshape((v.shape[0], 3, patch_size, patch_size))
|
381 |
+
out_dict[k] = v
|
382 |
+
|
383 |
+
return out_dict
|
384 |
+
|
385 |
+
|
386 |
+
## @register_model
|
387 |
+
class pvt_v2_b0(PyramidVisionTransformerImpr):
|
388 |
+
def __init__(self, **kwargs):
|
389 |
+
super(pvt_v2_b0, self).__init__(
|
390 |
+
patch_size=4, embed_dims=[32, 64, 160, 256], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
391 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
392 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
393 |
+
|
394 |
+
|
395 |
+
|
396 |
+
## @register_model
|
397 |
+
class pvt_v2_b1(PyramidVisionTransformerImpr):
|
398 |
+
def __init__(self, **kwargs):
|
399 |
+
super(pvt_v2_b1, self).__init__(
|
400 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
401 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[2, 2, 2, 2], sr_ratios=[8, 4, 2, 1],
|
402 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
403 |
+
|
404 |
+
## @register_model
|
405 |
+
class pvt_v2_b2(PyramidVisionTransformerImpr):
|
406 |
+
def __init__(self, in_channels=3, **kwargs):
|
407 |
+
super(pvt_v2_b2, self).__init__(
|
408 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
409 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 6, 3], sr_ratios=[8, 4, 2, 1],
|
410 |
+
drop_rate=0.0, drop_path_rate=0.1, in_channels=in_channels)
|
411 |
+
|
412 |
+
## @register_model
|
413 |
+
class pvt_v2_b3(PyramidVisionTransformerImpr):
|
414 |
+
def __init__(self, **kwargs):
|
415 |
+
super(pvt_v2_b3, self).__init__(
|
416 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
417 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 4, 18, 3], sr_ratios=[8, 4, 2, 1],
|
418 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
419 |
+
|
420 |
+
## @register_model
|
421 |
+
class pvt_v2_b4(PyramidVisionTransformerImpr):
|
422 |
+
def __init__(self, **kwargs):
|
423 |
+
super(pvt_v2_b4, self).__init__(
|
424 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[8, 8, 4, 4],
|
425 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 8, 27, 3], sr_ratios=[8, 4, 2, 1],
|
426 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
427 |
+
|
428 |
+
|
429 |
+
## @register_model
|
430 |
+
class pvt_v2_b5(PyramidVisionTransformerImpr):
|
431 |
+
def __init__(self, **kwargs):
|
432 |
+
super(pvt_v2_b5, self).__init__(
|
433 |
+
patch_size=4, embed_dims=[64, 128, 320, 512], num_heads=[1, 2, 5, 8], mlp_ratios=[4, 4, 4, 4],
|
434 |
+
qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6), depths=[3, 6, 40, 3], sr_ratios=[8, 4, 2, 1],
|
435 |
+
drop_rate=0.0, drop_path_rate=0.1)
|
BiRefNet_github/models/backbones/swin_v1.py
ADDED
@@ -0,0 +1,627 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Swin Transformer
|
3 |
+
# Copyright (c) 2021 Microsoft
|
4 |
+
# Licensed under The MIT License [see LICENSE for details]
|
5 |
+
# Written by Ze Liu, Yutong Lin, Yixuan Wei
|
6 |
+
# --------------------------------------------------------
|
7 |
+
|
8 |
+
import torch
|
9 |
+
import torch.nn as nn
|
10 |
+
import torch.nn.functional as F
|
11 |
+
import torch.utils.checkpoint as checkpoint
|
12 |
+
import numpy as np
|
13 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
14 |
+
|
15 |
+
from config import Config
|
16 |
+
|
17 |
+
|
18 |
+
config = Config()
|
19 |
+
|
20 |
+
class Mlp(nn.Module):
|
21 |
+
""" Multilayer perceptron."""
|
22 |
+
|
23 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
24 |
+
super().__init__()
|
25 |
+
out_features = out_features or in_features
|
26 |
+
hidden_features = hidden_features or in_features
|
27 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
28 |
+
self.act = act_layer()
|
29 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
30 |
+
self.drop = nn.Dropout(drop)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
x = self.fc1(x)
|
34 |
+
x = self.act(x)
|
35 |
+
x = self.drop(x)
|
36 |
+
x = self.fc2(x)
|
37 |
+
x = self.drop(x)
|
38 |
+
return x
|
39 |
+
|
40 |
+
|
41 |
+
def window_partition(x, window_size):
|
42 |
+
"""
|
43 |
+
Args:
|
44 |
+
x: (B, H, W, C)
|
45 |
+
window_size (int): window size
|
46 |
+
|
47 |
+
Returns:
|
48 |
+
windows: (num_windows*B, window_size, window_size, C)
|
49 |
+
"""
|
50 |
+
B, H, W, C = x.shape
|
51 |
+
x = x.view(B, H // window_size, window_size, W // window_size, window_size, C)
|
52 |
+
windows = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(-1, window_size, window_size, C)
|
53 |
+
return windows
|
54 |
+
|
55 |
+
|
56 |
+
def window_reverse(windows, window_size, H, W):
|
57 |
+
"""
|
58 |
+
Args:
|
59 |
+
windows: (num_windows*B, window_size, window_size, C)
|
60 |
+
window_size (int): Window size
|
61 |
+
H (int): Height of image
|
62 |
+
W (int): Width of image
|
63 |
+
|
64 |
+
Returns:
|
65 |
+
x: (B, H, W, C)
|
66 |
+
"""
|
67 |
+
B = int(windows.shape[0] / (H * W / window_size / window_size))
|
68 |
+
x = windows.view(B, H // window_size, W // window_size, window_size, window_size, -1)
|
69 |
+
x = x.permute(0, 1, 3, 2, 4, 5).contiguous().view(B, H, W, -1)
|
70 |
+
return x
|
71 |
+
|
72 |
+
|
73 |
+
class WindowAttention(nn.Module):
|
74 |
+
""" Window based multi-head self attention (W-MSA) module with relative position bias.
|
75 |
+
It supports both of shifted and non-shifted window.
|
76 |
+
|
77 |
+
Args:
|
78 |
+
dim (int): Number of input channels.
|
79 |
+
window_size (tuple[int]): The height and width of the window.
|
80 |
+
num_heads (int): Number of attention heads.
|
81 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
82 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set
|
83 |
+
attn_drop (float, optional): Dropout ratio of attention weight. Default: 0.0
|
84 |
+
proj_drop (float, optional): Dropout ratio of output. Default: 0.0
|
85 |
+
"""
|
86 |
+
|
87 |
+
def __init__(self, dim, window_size, num_heads, qkv_bias=True, qk_scale=None, attn_drop=0., proj_drop=0.):
|
88 |
+
|
89 |
+
super().__init__()
|
90 |
+
self.dim = dim
|
91 |
+
self.window_size = window_size # Wh, Ww
|
92 |
+
self.num_heads = num_heads
|
93 |
+
head_dim = dim // num_heads
|
94 |
+
self.scale = qk_scale or head_dim ** -0.5
|
95 |
+
|
96 |
+
# define a parameter table of relative position bias
|
97 |
+
self.relative_position_bias_table = nn.Parameter(
|
98 |
+
torch.zeros((2 * window_size[0] - 1) * (2 * window_size[1] - 1), num_heads)) # 2*Wh-1 * 2*Ww-1, nH
|
99 |
+
|
100 |
+
# get pair-wise relative position index for each token inside the window
|
101 |
+
coords_h = torch.arange(self.window_size[0])
|
102 |
+
coords_w = torch.arange(self.window_size[1])
|
103 |
+
coords = torch.stack(torch.meshgrid([coords_h, coords_w], indexing='ij')) # 2, Wh, Ww
|
104 |
+
coords_flatten = torch.flatten(coords, 1) # 2, Wh*Ww
|
105 |
+
relative_coords = coords_flatten[:, :, None] - coords_flatten[:, None, :] # 2, Wh*Ww, Wh*Ww
|
106 |
+
relative_coords = relative_coords.permute(1, 2, 0).contiguous() # Wh*Ww, Wh*Ww, 2
|
107 |
+
relative_coords[:, :, 0] += self.window_size[0] - 1 # shift to start from 0
|
108 |
+
relative_coords[:, :, 1] += self.window_size[1] - 1
|
109 |
+
relative_coords[:, :, 0] *= 2 * self.window_size[1] - 1
|
110 |
+
relative_position_index = relative_coords.sum(-1) # Wh*Ww, Wh*Ww
|
111 |
+
self.register_buffer("relative_position_index", relative_position_index)
|
112 |
+
|
113 |
+
self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)
|
114 |
+
self.attn_drop_prob = attn_drop
|
115 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
116 |
+
self.proj = nn.Linear(dim, dim)
|
117 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
118 |
+
|
119 |
+
trunc_normal_(self.relative_position_bias_table, std=.02)
|
120 |
+
self.softmax = nn.Softmax(dim=-1)
|
121 |
+
|
122 |
+
def forward(self, x, mask=None):
|
123 |
+
""" Forward function.
|
124 |
+
|
125 |
+
Args:
|
126 |
+
x: input features with shape of (num_windows*B, N, C)
|
127 |
+
mask: (0/-inf) mask with shape of (num_windows, Wh*Ww, Wh*Ww) or None
|
128 |
+
"""
|
129 |
+
B_, N, C = x.shape
|
130 |
+
qkv = self.qkv(x).reshape(B_, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
131 |
+
q, k, v = qkv[0], qkv[1], qkv[2] # make torchscript happy (cannot use tensor as tuple)
|
132 |
+
|
133 |
+
q = q * self.scale
|
134 |
+
|
135 |
+
if config.SDPA_enabled:
|
136 |
+
x = torch.nn.functional.scaled_dot_product_attention(
|
137 |
+
q, k, v,
|
138 |
+
attn_mask=None, dropout_p=self.attn_drop_prob, is_causal=False
|
139 |
+
).transpose(1, 2).reshape(B_, N, C)
|
140 |
+
else:
|
141 |
+
attn = (q @ k.transpose(-2, -1))
|
142 |
+
|
143 |
+
relative_position_bias = self.relative_position_bias_table[self.relative_position_index.view(-1)].view(
|
144 |
+
self.window_size[0] * self.window_size[1], self.window_size[0] * self.window_size[1], -1) # Wh*Ww,Wh*Ww,nH
|
145 |
+
relative_position_bias = relative_position_bias.permute(2, 0, 1).contiguous() # nH, Wh*Ww, Wh*Ww
|
146 |
+
attn = attn + relative_position_bias.unsqueeze(0)
|
147 |
+
|
148 |
+
if mask is not None:
|
149 |
+
nW = mask.shape[0]
|
150 |
+
attn = attn.view(B_ // nW, nW, self.num_heads, N, N) + mask.unsqueeze(1).unsqueeze(0)
|
151 |
+
attn = attn.view(-1, self.num_heads, N, N)
|
152 |
+
attn = self.softmax(attn)
|
153 |
+
else:
|
154 |
+
attn = self.softmax(attn)
|
155 |
+
|
156 |
+
attn = self.attn_drop(attn)
|
157 |
+
|
158 |
+
x = (attn @ v).transpose(1, 2).reshape(B_, N, C)
|
159 |
+
x = self.proj(x)
|
160 |
+
x = self.proj_drop(x)
|
161 |
+
return x
|
162 |
+
|
163 |
+
|
164 |
+
class SwinTransformerBlock(nn.Module):
|
165 |
+
""" Swin Transformer Block.
|
166 |
+
|
167 |
+
Args:
|
168 |
+
dim (int): Number of input channels.
|
169 |
+
num_heads (int): Number of attention heads.
|
170 |
+
window_size (int): Window size.
|
171 |
+
shift_size (int): Shift size for SW-MSA.
|
172 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim.
|
173 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
174 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
175 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
176 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
177 |
+
drop_path (float, optional): Stochastic depth rate. Default: 0.0
|
178 |
+
act_layer (nn.Module, optional): Activation layer. Default: nn.GELU
|
179 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
180 |
+
"""
|
181 |
+
|
182 |
+
def __init__(self, dim, num_heads, window_size=7, shift_size=0,
|
183 |
+
mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0.,
|
184 |
+
act_layer=nn.GELU, norm_layer=nn.LayerNorm):
|
185 |
+
super().__init__()
|
186 |
+
self.dim = dim
|
187 |
+
self.num_heads = num_heads
|
188 |
+
self.window_size = window_size
|
189 |
+
self.shift_size = shift_size
|
190 |
+
self.mlp_ratio = mlp_ratio
|
191 |
+
assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size"
|
192 |
+
|
193 |
+
self.norm1 = norm_layer(dim)
|
194 |
+
self.attn = WindowAttention(
|
195 |
+
dim, window_size=to_2tuple(self.window_size), num_heads=num_heads,
|
196 |
+
qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop)
|
197 |
+
|
198 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
199 |
+
self.norm2 = norm_layer(dim)
|
200 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
201 |
+
self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
202 |
+
|
203 |
+
self.H = None
|
204 |
+
self.W = None
|
205 |
+
|
206 |
+
def forward(self, x, mask_matrix):
|
207 |
+
""" Forward function.
|
208 |
+
|
209 |
+
Args:
|
210 |
+
x: Input feature, tensor size (B, H*W, C).
|
211 |
+
H, W: Spatial resolution of the input feature.
|
212 |
+
mask_matrix: Attention mask for cyclic shift.
|
213 |
+
"""
|
214 |
+
B, L, C = x.shape
|
215 |
+
H, W = self.H, self.W
|
216 |
+
assert L == H * W, "input feature has wrong size"
|
217 |
+
|
218 |
+
shortcut = x
|
219 |
+
x = self.norm1(x)
|
220 |
+
x = x.view(B, H, W, C)
|
221 |
+
|
222 |
+
# pad feature maps to multiples of window size
|
223 |
+
pad_l = pad_t = 0
|
224 |
+
pad_r = (self.window_size - W % self.window_size) % self.window_size
|
225 |
+
pad_b = (self.window_size - H % self.window_size) % self.window_size
|
226 |
+
x = F.pad(x, (0, 0, pad_l, pad_r, pad_t, pad_b))
|
227 |
+
_, Hp, Wp, _ = x.shape
|
228 |
+
|
229 |
+
# cyclic shift
|
230 |
+
if self.shift_size > 0:
|
231 |
+
shifted_x = torch.roll(x, shifts=(-self.shift_size, -self.shift_size), dims=(1, 2))
|
232 |
+
attn_mask = mask_matrix
|
233 |
+
else:
|
234 |
+
shifted_x = x
|
235 |
+
attn_mask = None
|
236 |
+
|
237 |
+
# partition windows
|
238 |
+
x_windows = window_partition(shifted_x, self.window_size) # nW*B, window_size, window_size, C
|
239 |
+
x_windows = x_windows.view(-1, self.window_size * self.window_size, C) # nW*B, window_size*window_size, C
|
240 |
+
|
241 |
+
# W-MSA/SW-MSA
|
242 |
+
attn_windows = self.attn(x_windows, mask=attn_mask) # nW*B, window_size*window_size, C
|
243 |
+
|
244 |
+
# merge windows
|
245 |
+
attn_windows = attn_windows.view(-1, self.window_size, self.window_size, C)
|
246 |
+
shifted_x = window_reverse(attn_windows, self.window_size, Hp, Wp) # B H' W' C
|
247 |
+
|
248 |
+
# reverse cyclic shift
|
249 |
+
if self.shift_size > 0:
|
250 |
+
x = torch.roll(shifted_x, shifts=(self.shift_size, self.shift_size), dims=(1, 2))
|
251 |
+
else:
|
252 |
+
x = shifted_x
|
253 |
+
|
254 |
+
if pad_r > 0 or pad_b > 0:
|
255 |
+
x = x[:, :H, :W, :].contiguous()
|
256 |
+
|
257 |
+
x = x.view(B, H * W, C)
|
258 |
+
|
259 |
+
# FFN
|
260 |
+
x = shortcut + self.drop_path(x)
|
261 |
+
x = x + self.drop_path(self.mlp(self.norm2(x)))
|
262 |
+
|
263 |
+
return x
|
264 |
+
|
265 |
+
|
266 |
+
class PatchMerging(nn.Module):
|
267 |
+
""" Patch Merging Layer
|
268 |
+
|
269 |
+
Args:
|
270 |
+
dim (int): Number of input channels.
|
271 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
272 |
+
"""
|
273 |
+
def __init__(self, dim, norm_layer=nn.LayerNorm):
|
274 |
+
super().__init__()
|
275 |
+
self.dim = dim
|
276 |
+
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
|
277 |
+
self.norm = norm_layer(4 * dim)
|
278 |
+
|
279 |
+
def forward(self, x, H, W):
|
280 |
+
""" Forward function.
|
281 |
+
|
282 |
+
Args:
|
283 |
+
x: Input feature, tensor size (B, H*W, C).
|
284 |
+
H, W: Spatial resolution of the input feature.
|
285 |
+
"""
|
286 |
+
B, L, C = x.shape
|
287 |
+
assert L == H * W, "input feature has wrong size"
|
288 |
+
|
289 |
+
x = x.view(B, H, W, C)
|
290 |
+
|
291 |
+
# padding
|
292 |
+
pad_input = (H % 2 == 1) or (W % 2 == 1)
|
293 |
+
if pad_input:
|
294 |
+
x = F.pad(x, (0, 0, 0, W % 2, 0, H % 2))
|
295 |
+
|
296 |
+
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
|
297 |
+
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
|
298 |
+
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
|
299 |
+
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
|
300 |
+
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
|
301 |
+
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
|
302 |
+
|
303 |
+
x = self.norm(x)
|
304 |
+
x = self.reduction(x)
|
305 |
+
|
306 |
+
return x
|
307 |
+
|
308 |
+
|
309 |
+
class BasicLayer(nn.Module):
|
310 |
+
""" A basic Swin Transformer layer for one stage.
|
311 |
+
|
312 |
+
Args:
|
313 |
+
dim (int): Number of feature channels
|
314 |
+
depth (int): Depths of this stage.
|
315 |
+
num_heads (int): Number of attention head.
|
316 |
+
window_size (int): Local window size. Default: 7.
|
317 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
318 |
+
qkv_bias (bool, optional): If True, add a learnable bias to query, key, value. Default: True
|
319 |
+
qk_scale (float | None, optional): Override default qk scale of head_dim ** -0.5 if set.
|
320 |
+
drop (float, optional): Dropout rate. Default: 0.0
|
321 |
+
attn_drop (float, optional): Attention dropout rate. Default: 0.0
|
322 |
+
drop_path (float | tuple[float], optional): Stochastic depth rate. Default: 0.0
|
323 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: nn.LayerNorm
|
324 |
+
downsample (nn.Module | None, optional): Downsample layer at the end of the layer. Default: None
|
325 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
326 |
+
"""
|
327 |
+
|
328 |
+
def __init__(self,
|
329 |
+
dim,
|
330 |
+
depth,
|
331 |
+
num_heads,
|
332 |
+
window_size=7,
|
333 |
+
mlp_ratio=4.,
|
334 |
+
qkv_bias=True,
|
335 |
+
qk_scale=None,
|
336 |
+
drop=0.,
|
337 |
+
attn_drop=0.,
|
338 |
+
drop_path=0.,
|
339 |
+
norm_layer=nn.LayerNorm,
|
340 |
+
downsample=None,
|
341 |
+
use_checkpoint=False):
|
342 |
+
super().__init__()
|
343 |
+
self.window_size = window_size
|
344 |
+
self.shift_size = window_size // 2
|
345 |
+
self.depth = depth
|
346 |
+
self.use_checkpoint = use_checkpoint
|
347 |
+
|
348 |
+
# build blocks
|
349 |
+
self.blocks = nn.ModuleList([
|
350 |
+
SwinTransformerBlock(
|
351 |
+
dim=dim,
|
352 |
+
num_heads=num_heads,
|
353 |
+
window_size=window_size,
|
354 |
+
shift_size=0 if (i % 2 == 0) else window_size // 2,
|
355 |
+
mlp_ratio=mlp_ratio,
|
356 |
+
qkv_bias=qkv_bias,
|
357 |
+
qk_scale=qk_scale,
|
358 |
+
drop=drop,
|
359 |
+
attn_drop=attn_drop,
|
360 |
+
drop_path=drop_path[i] if isinstance(drop_path, list) else drop_path,
|
361 |
+
norm_layer=norm_layer)
|
362 |
+
for i in range(depth)])
|
363 |
+
|
364 |
+
# patch merging layer
|
365 |
+
if downsample is not None:
|
366 |
+
self.downsample = downsample(dim=dim, norm_layer=norm_layer)
|
367 |
+
else:
|
368 |
+
self.downsample = None
|
369 |
+
|
370 |
+
def forward(self, x, H, W):
|
371 |
+
""" Forward function.
|
372 |
+
|
373 |
+
Args:
|
374 |
+
x: Input feature, tensor size (B, H*W, C).
|
375 |
+
H, W: Spatial resolution of the input feature.
|
376 |
+
"""
|
377 |
+
|
378 |
+
# calculate attention mask for SW-MSA
|
379 |
+
Hp = int(np.ceil(H / self.window_size)) * self.window_size
|
380 |
+
Wp = int(np.ceil(W / self.window_size)) * self.window_size
|
381 |
+
img_mask = torch.zeros((1, Hp, Wp, 1), device=x.device) # 1 Hp Wp 1
|
382 |
+
h_slices = (slice(0, -self.window_size),
|
383 |
+
slice(-self.window_size, -self.shift_size),
|
384 |
+
slice(-self.shift_size, None))
|
385 |
+
w_slices = (slice(0, -self.window_size),
|
386 |
+
slice(-self.window_size, -self.shift_size),
|
387 |
+
slice(-self.shift_size, None))
|
388 |
+
cnt = 0
|
389 |
+
for h in h_slices:
|
390 |
+
for w in w_slices:
|
391 |
+
img_mask[:, h, w, :] = cnt
|
392 |
+
cnt += 1
|
393 |
+
|
394 |
+
mask_windows = window_partition(img_mask, self.window_size) # nW, window_size, window_size, 1
|
395 |
+
mask_windows = mask_windows.view(-1, self.window_size * self.window_size)
|
396 |
+
attn_mask = mask_windows.unsqueeze(1) - mask_windows.unsqueeze(2)
|
397 |
+
attn_mask = attn_mask.masked_fill(attn_mask != 0, float(-100.0)).masked_fill(attn_mask == 0, float(0.0))
|
398 |
+
|
399 |
+
for blk in self.blocks:
|
400 |
+
blk.H, blk.W = H, W
|
401 |
+
if self.use_checkpoint:
|
402 |
+
x = checkpoint.checkpoint(blk, x, attn_mask)
|
403 |
+
else:
|
404 |
+
x = blk(x, attn_mask)
|
405 |
+
if self.downsample is not None:
|
406 |
+
x_down = self.downsample(x, H, W)
|
407 |
+
Wh, Ww = (H + 1) // 2, (W + 1) // 2
|
408 |
+
return x, H, W, x_down, Wh, Ww
|
409 |
+
else:
|
410 |
+
return x, H, W, x, H, W
|
411 |
+
|
412 |
+
|
413 |
+
class PatchEmbed(nn.Module):
|
414 |
+
""" Image to Patch Embedding
|
415 |
+
|
416 |
+
Args:
|
417 |
+
patch_size (int): Patch token size. Default: 4.
|
418 |
+
in_channels (int): Number of input image channels. Default: 3.
|
419 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
420 |
+
norm_layer (nn.Module, optional): Normalization layer. Default: None
|
421 |
+
"""
|
422 |
+
|
423 |
+
def __init__(self, patch_size=4, in_channels=3, embed_dim=96, norm_layer=None):
|
424 |
+
super().__init__()
|
425 |
+
patch_size = to_2tuple(patch_size)
|
426 |
+
self.patch_size = patch_size
|
427 |
+
|
428 |
+
self.in_channels = in_channels
|
429 |
+
self.embed_dim = embed_dim
|
430 |
+
|
431 |
+
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=patch_size)
|
432 |
+
if norm_layer is not None:
|
433 |
+
self.norm = norm_layer(embed_dim)
|
434 |
+
else:
|
435 |
+
self.norm = None
|
436 |
+
|
437 |
+
def forward(self, x):
|
438 |
+
"""Forward function."""
|
439 |
+
# padding
|
440 |
+
_, _, H, W = x.size()
|
441 |
+
if W % self.patch_size[1] != 0:
|
442 |
+
x = F.pad(x, (0, self.patch_size[1] - W % self.patch_size[1]))
|
443 |
+
if H % self.patch_size[0] != 0:
|
444 |
+
x = F.pad(x, (0, 0, 0, self.patch_size[0] - H % self.patch_size[0]))
|
445 |
+
|
446 |
+
x = self.proj(x) # B C Wh Ww
|
447 |
+
if self.norm is not None:
|
448 |
+
Wh, Ww = x.size(2), x.size(3)
|
449 |
+
x = x.flatten(2).transpose(1, 2)
|
450 |
+
x = self.norm(x)
|
451 |
+
x = x.transpose(1, 2).view(-1, self.embed_dim, Wh, Ww)
|
452 |
+
|
453 |
+
return x
|
454 |
+
|
455 |
+
|
456 |
+
class SwinTransformer(nn.Module):
|
457 |
+
""" Swin Transformer backbone.
|
458 |
+
A PyTorch impl of : `Swin Transformer: Hierarchical Vision Transformer using Shifted Windows` -
|
459 |
+
https://arxiv.org/pdf/2103.14030
|
460 |
+
|
461 |
+
Args:
|
462 |
+
pretrain_img_size (int): Input image size for training the pretrained model,
|
463 |
+
used in absolute postion embedding. Default 224.
|
464 |
+
patch_size (int | tuple(int)): Patch size. Default: 4.
|
465 |
+
in_channels (int): Number of input image channels. Default: 3.
|
466 |
+
embed_dim (int): Number of linear projection output channels. Default: 96.
|
467 |
+
depths (tuple[int]): Depths of each Swin Transformer stage.
|
468 |
+
num_heads (tuple[int]): Number of attention head of each stage.
|
469 |
+
window_size (int): Window size. Default: 7.
|
470 |
+
mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.
|
471 |
+
qkv_bias (bool): If True, add a learnable bias to query, key, value. Default: True
|
472 |
+
qk_scale (float): Override default qk scale of head_dim ** -0.5 if set.
|
473 |
+
drop_rate (float): Dropout rate.
|
474 |
+
attn_drop_rate (float): Attention dropout rate. Default: 0.
|
475 |
+
drop_path_rate (float): Stochastic depth rate. Default: 0.2.
|
476 |
+
norm_layer (nn.Module): Normalization layer. Default: nn.LayerNorm.
|
477 |
+
ape (bool): If True, add absolute position embedding to the patch embedding. Default: False.
|
478 |
+
patch_norm (bool): If True, add normalization after patch embedding. Default: True.
|
479 |
+
out_indices (Sequence[int]): Output from which stages.
|
480 |
+
frozen_stages (int): Stages to be frozen (stop grad and set eval mode).
|
481 |
+
-1 means not freezing any parameters.
|
482 |
+
use_checkpoint (bool): Whether to use checkpointing to save memory. Default: False.
|
483 |
+
"""
|
484 |
+
|
485 |
+
def __init__(self,
|
486 |
+
pretrain_img_size=224,
|
487 |
+
patch_size=4,
|
488 |
+
in_channels=3,
|
489 |
+
embed_dim=96,
|
490 |
+
depths=[2, 2, 6, 2],
|
491 |
+
num_heads=[3, 6, 12, 24],
|
492 |
+
window_size=7,
|
493 |
+
mlp_ratio=4.,
|
494 |
+
qkv_bias=True,
|
495 |
+
qk_scale=None,
|
496 |
+
drop_rate=0.,
|
497 |
+
attn_drop_rate=0.,
|
498 |
+
drop_path_rate=0.2,
|
499 |
+
norm_layer=nn.LayerNorm,
|
500 |
+
ape=False,
|
501 |
+
patch_norm=True,
|
502 |
+
out_indices=(0, 1, 2, 3),
|
503 |
+
frozen_stages=-1,
|
504 |
+
use_checkpoint=False):
|
505 |
+
super().__init__()
|
506 |
+
|
507 |
+
self.pretrain_img_size = pretrain_img_size
|
508 |
+
self.num_layers = len(depths)
|
509 |
+
self.embed_dim = embed_dim
|
510 |
+
self.ape = ape
|
511 |
+
self.patch_norm = patch_norm
|
512 |
+
self.out_indices = out_indices
|
513 |
+
self.frozen_stages = frozen_stages
|
514 |
+
|
515 |
+
# split image into non-overlapping patches
|
516 |
+
self.patch_embed = PatchEmbed(
|
517 |
+
patch_size=patch_size, in_channels=in_channels, embed_dim=embed_dim,
|
518 |
+
norm_layer=norm_layer if self.patch_norm else None)
|
519 |
+
|
520 |
+
# absolute position embedding
|
521 |
+
if self.ape:
|
522 |
+
pretrain_img_size = to_2tuple(pretrain_img_size)
|
523 |
+
patch_size = to_2tuple(patch_size)
|
524 |
+
patches_resolution = [pretrain_img_size[0] // patch_size[0], pretrain_img_size[1] // patch_size[1]]
|
525 |
+
|
526 |
+
self.absolute_pos_embed = nn.Parameter(torch.zeros(1, embed_dim, patches_resolution[0], patches_resolution[1]))
|
527 |
+
trunc_normal_(self.absolute_pos_embed, std=.02)
|
528 |
+
|
529 |
+
self.pos_drop = nn.Dropout(p=drop_rate)
|
530 |
+
|
531 |
+
# stochastic depth
|
532 |
+
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))] # stochastic depth decay rule
|
533 |
+
|
534 |
+
# build layers
|
535 |
+
self.layers = nn.ModuleList()
|
536 |
+
for i_layer in range(self.num_layers):
|
537 |
+
layer = BasicLayer(
|
538 |
+
dim=int(embed_dim * 2 ** i_layer),
|
539 |
+
depth=depths[i_layer],
|
540 |
+
num_heads=num_heads[i_layer],
|
541 |
+
window_size=window_size,
|
542 |
+
mlp_ratio=mlp_ratio,
|
543 |
+
qkv_bias=qkv_bias,
|
544 |
+
qk_scale=qk_scale,
|
545 |
+
drop=drop_rate,
|
546 |
+
attn_drop=attn_drop_rate,
|
547 |
+
drop_path=dpr[sum(depths[:i_layer]):sum(depths[:i_layer + 1])],
|
548 |
+
norm_layer=norm_layer,
|
549 |
+
downsample=PatchMerging if (i_layer < self.num_layers - 1) else None,
|
550 |
+
use_checkpoint=use_checkpoint)
|
551 |
+
self.layers.append(layer)
|
552 |
+
|
553 |
+
num_features = [int(embed_dim * 2 ** i) for i in range(self.num_layers)]
|
554 |
+
self.num_features = num_features
|
555 |
+
|
556 |
+
# add a norm layer for each output
|
557 |
+
for i_layer in out_indices:
|
558 |
+
layer = norm_layer(num_features[i_layer])
|
559 |
+
layer_name = f'norm{i_layer}'
|
560 |
+
self.add_module(layer_name, layer)
|
561 |
+
|
562 |
+
self._freeze_stages()
|
563 |
+
|
564 |
+
def _freeze_stages(self):
|
565 |
+
if self.frozen_stages >= 0:
|
566 |
+
self.patch_embed.eval()
|
567 |
+
for param in self.patch_embed.parameters():
|
568 |
+
param.requires_grad = False
|
569 |
+
|
570 |
+
if self.frozen_stages >= 1 and self.ape:
|
571 |
+
self.absolute_pos_embed.requires_grad = False
|
572 |
+
|
573 |
+
if self.frozen_stages >= 2:
|
574 |
+
self.pos_drop.eval()
|
575 |
+
for i in range(0, self.frozen_stages - 1):
|
576 |
+
m = self.layers[i]
|
577 |
+
m.eval()
|
578 |
+
for param in m.parameters():
|
579 |
+
param.requires_grad = False
|
580 |
+
|
581 |
+
|
582 |
+
def forward(self, x):
|
583 |
+
"""Forward function."""
|
584 |
+
x = self.patch_embed(x)
|
585 |
+
|
586 |
+
Wh, Ww = x.size(2), x.size(3)
|
587 |
+
if self.ape:
|
588 |
+
# interpolate the position embedding to the corresponding size
|
589 |
+
absolute_pos_embed = F.interpolate(self.absolute_pos_embed, size=(Wh, Ww), mode='bicubic')
|
590 |
+
x = (x + absolute_pos_embed) # B Wh*Ww C
|
591 |
+
|
592 |
+
outs = []#x.contiguous()]
|
593 |
+
x = x.flatten(2).transpose(1, 2)
|
594 |
+
x = self.pos_drop(x)
|
595 |
+
for i in range(self.num_layers):
|
596 |
+
layer = self.layers[i]
|
597 |
+
x_out, H, W, x, Wh, Ww = layer(x, Wh, Ww)
|
598 |
+
|
599 |
+
if i in self.out_indices:
|
600 |
+
norm_layer = getattr(self, f'norm{i}')
|
601 |
+
x_out = norm_layer(x_out)
|
602 |
+
|
603 |
+
out = x_out.view(-1, H, W, self.num_features[i]).permute(0, 3, 1, 2).contiguous()
|
604 |
+
outs.append(out)
|
605 |
+
|
606 |
+
return tuple(outs)
|
607 |
+
|
608 |
+
def train(self, mode=True):
|
609 |
+
"""Convert the model into training mode while keep layers freezed."""
|
610 |
+
super(SwinTransformer, self).train(mode)
|
611 |
+
self._freeze_stages()
|
612 |
+
|
613 |
+
def swin_v1_t():
|
614 |
+
model = SwinTransformer(embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24], window_size=7)
|
615 |
+
return model
|
616 |
+
|
617 |
+
def swin_v1_s():
|
618 |
+
model = SwinTransformer(embed_dim=96, depths=[2, 2, 18, 2], num_heads=[3, 6, 12, 24], window_size=7)
|
619 |
+
return model
|
620 |
+
|
621 |
+
def swin_v1_b():
|
622 |
+
model = SwinTransformer(embed_dim=128, depths=[2, 2, 18, 2], num_heads=[4, 8, 16, 32], window_size=12)
|
623 |
+
return model
|
624 |
+
|
625 |
+
def swin_v1_l():
|
626 |
+
model = SwinTransformer(embed_dim=192, depths=[2, 2, 18, 2], num_heads=[6, 12, 24, 48], window_size=12)
|
627 |
+
return model
|
BiRefNet_github/models/birefnet.py
ADDED
@@ -0,0 +1,287 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from kornia.filters import laplacian
|
5 |
+
from huggingface_hub import PyTorchModelHubMixin
|
6 |
+
|
7 |
+
from config import Config
|
8 |
+
from dataset import class_labels_TR_sorted
|
9 |
+
from models.backbones.build_backbone import build_backbone
|
10 |
+
from models.modules.decoder_blocks import BasicDecBlk, ResBlk, HierarAttDecBlk
|
11 |
+
from models.modules.lateral_blocks import BasicLatBlk
|
12 |
+
from models.modules.aspp import ASPP, ASPPDeformable
|
13 |
+
from models.modules.ing import *
|
14 |
+
from models.refinement.refiner import Refiner, RefinerPVTInChannels4, RefUNet
|
15 |
+
from models.refinement.stem_layer import StemLayer
|
16 |
+
|
17 |
+
|
18 |
+
class BiRefNet(
|
19 |
+
nn.Module,
|
20 |
+
PyTorchModelHubMixin,
|
21 |
+
library_name="birefnet",
|
22 |
+
repo_url="https://github.com/ZhengPeng7/BiRefNet",
|
23 |
+
tags=['Image Segmentation', 'Background Removal', 'Mask Generation', 'Dichotomous Image Segmentation', 'Camouflaged Object Detection', 'Salient Object Detection']
|
24 |
+
):
|
25 |
+
def __init__(self, bb_pretrained=True):
|
26 |
+
super(BiRefNet, self).__init__()
|
27 |
+
self.config = Config()
|
28 |
+
self.epoch = 1
|
29 |
+
self.bb = build_backbone(self.config.bb, pretrained=bb_pretrained)
|
30 |
+
|
31 |
+
channels = self.config.lateral_channels_in_collection
|
32 |
+
|
33 |
+
if self.config.auxiliary_classification:
|
34 |
+
self.avgpool = nn.AdaptiveAvgPool2d((1, 1))
|
35 |
+
self.cls_head = nn.Sequential(
|
36 |
+
nn.Linear(channels[0], len(class_labels_TR_sorted))
|
37 |
+
)
|
38 |
+
|
39 |
+
if self.config.squeeze_block:
|
40 |
+
self.squeeze_module = nn.Sequential(*[
|
41 |
+
eval(self.config.squeeze_block.split('_x')[0])(channels[0]+sum(self.config.cxt), channels[0])
|
42 |
+
for _ in range(eval(self.config.squeeze_block.split('_x')[1]))
|
43 |
+
])
|
44 |
+
|
45 |
+
self.decoder = Decoder(channels)
|
46 |
+
|
47 |
+
if self.config.ender:
|
48 |
+
self.dec_end = nn.Sequential(
|
49 |
+
nn.Conv2d(1, 16, 3, 1, 1),
|
50 |
+
nn.Conv2d(16, 1, 3, 1, 1),
|
51 |
+
nn.ReLU(inplace=True),
|
52 |
+
)
|
53 |
+
|
54 |
+
# refine patch-level segmentation
|
55 |
+
if self.config.refine:
|
56 |
+
if self.config.refine == 'itself':
|
57 |
+
self.stem_layer = StemLayer(in_channels=3+1, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
|
58 |
+
else:
|
59 |
+
self.refiner = eval('{}({})'.format(self.config.refine, 'in_channels=3+1'))
|
60 |
+
|
61 |
+
if self.config.freeze_bb:
|
62 |
+
# Freeze the backbone...
|
63 |
+
print(self.named_parameters())
|
64 |
+
for key, value in self.named_parameters():
|
65 |
+
if 'bb.' in key and 'refiner.' not in key:
|
66 |
+
value.requires_grad = False
|
67 |
+
|
68 |
+
def forward_enc(self, x):
|
69 |
+
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
70 |
+
x1 = self.bb.conv1(x); x2 = self.bb.conv2(x1); x3 = self.bb.conv3(x2); x4 = self.bb.conv4(x3)
|
71 |
+
else:
|
72 |
+
x1, x2, x3, x4 = self.bb(x)
|
73 |
+
if self.config.mul_scl_ipt == 'cat':
|
74 |
+
B, C, H, W = x.shape
|
75 |
+
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
|
76 |
+
x1 = torch.cat([x1, F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
77 |
+
x2 = torch.cat([x2, F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
78 |
+
x3 = torch.cat([x3, F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
79 |
+
x4 = torch.cat([x4, F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)], dim=1)
|
80 |
+
elif self.config.mul_scl_ipt == 'add':
|
81 |
+
B, C, H, W = x.shape
|
82 |
+
x1_, x2_, x3_, x4_ = self.bb(F.interpolate(x, size=(H//2, W//2), mode='bilinear', align_corners=True))
|
83 |
+
x1 = x1 + F.interpolate(x1_, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
84 |
+
x2 = x2 + F.interpolate(x2_, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
85 |
+
x3 = x3 + F.interpolate(x3_, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
86 |
+
x4 = x4 + F.interpolate(x4_, size=x4.shape[2:], mode='bilinear', align_corners=True)
|
87 |
+
class_preds = self.cls_head(self.avgpool(x4).view(x4.shape[0], -1)) if self.training and self.config.auxiliary_classification else None
|
88 |
+
if self.config.cxt:
|
89 |
+
x4 = torch.cat(
|
90 |
+
(
|
91 |
+
*[
|
92 |
+
F.interpolate(x1, size=x4.shape[2:], mode='bilinear', align_corners=True),
|
93 |
+
F.interpolate(x2, size=x4.shape[2:], mode='bilinear', align_corners=True),
|
94 |
+
F.interpolate(x3, size=x4.shape[2:], mode='bilinear', align_corners=True),
|
95 |
+
][-len(self.config.cxt):],
|
96 |
+
x4
|
97 |
+
),
|
98 |
+
dim=1
|
99 |
+
)
|
100 |
+
return (x1, x2, x3, x4), class_preds
|
101 |
+
|
102 |
+
def forward_ori(self, x):
|
103 |
+
########## Encoder ##########
|
104 |
+
(x1, x2, x3, x4), class_preds = self.forward_enc(x)
|
105 |
+
if self.config.squeeze_block:
|
106 |
+
x4 = self.squeeze_module(x4)
|
107 |
+
########## Decoder ##########
|
108 |
+
features = [x, x1, x2, x3, x4]
|
109 |
+
if self.training and self.config.out_ref:
|
110 |
+
features.append(laplacian(torch.mean(x, dim=1).unsqueeze(1), kernel_size=5))
|
111 |
+
scaled_preds = self.decoder(features)
|
112 |
+
return scaled_preds, class_preds
|
113 |
+
|
114 |
+
def forward(self, x):
|
115 |
+
scaled_preds, class_preds = self.forward_ori(x)
|
116 |
+
class_preds_lst = [class_preds]
|
117 |
+
return [scaled_preds, class_preds_lst] if self.training else scaled_preds
|
118 |
+
|
119 |
+
|
120 |
+
class Decoder(nn.Module):
|
121 |
+
def __init__(self, channels):
|
122 |
+
super(Decoder, self).__init__()
|
123 |
+
self.config = Config()
|
124 |
+
DecoderBlock = eval(self.config.dec_blk)
|
125 |
+
LateralBlock = eval(self.config.lat_blk)
|
126 |
+
|
127 |
+
if self.config.dec_ipt:
|
128 |
+
self.split = self.config.dec_ipt_split
|
129 |
+
N_dec_ipt = 64
|
130 |
+
DBlock = SimpleConvs
|
131 |
+
ic = 64
|
132 |
+
ipt_cha_opt = 1
|
133 |
+
self.ipt_blk5 = DBlock(2**10*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
|
134 |
+
self.ipt_blk4 = DBlock(2**8*3 if self.split else 3, [N_dec_ipt, channels[0]//8][ipt_cha_opt], inter_channels=ic)
|
135 |
+
self.ipt_blk3 = DBlock(2**6*3 if self.split else 3, [N_dec_ipt, channels[1]//8][ipt_cha_opt], inter_channels=ic)
|
136 |
+
self.ipt_blk2 = DBlock(2**4*3 if self.split else 3, [N_dec_ipt, channels[2]//8][ipt_cha_opt], inter_channels=ic)
|
137 |
+
self.ipt_blk1 = DBlock(2**0*3 if self.split else 3, [N_dec_ipt, channels[3]//8][ipt_cha_opt], inter_channels=ic)
|
138 |
+
else:
|
139 |
+
self.split = None
|
140 |
+
|
141 |
+
self.decoder_block4 = DecoderBlock(channels[0]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[1])
|
142 |
+
self.decoder_block3 = DecoderBlock(channels[1]+([N_dec_ipt, channels[0]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[2])
|
143 |
+
self.decoder_block2 = DecoderBlock(channels[2]+([N_dec_ipt, channels[1]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3])
|
144 |
+
self.decoder_block1 = DecoderBlock(channels[3]+([N_dec_ipt, channels[2]//8][ipt_cha_opt] if self.config.dec_ipt else 0), channels[3]//2)
|
145 |
+
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2+([N_dec_ipt, channels[3]//8][ipt_cha_opt] if self.config.dec_ipt else 0), 1, 1, 1, 0))
|
146 |
+
|
147 |
+
self.lateral_block4 = LateralBlock(channels[1], channels[1])
|
148 |
+
self.lateral_block3 = LateralBlock(channels[2], channels[2])
|
149 |
+
self.lateral_block2 = LateralBlock(channels[3], channels[3])
|
150 |
+
|
151 |
+
if self.config.ms_supervision:
|
152 |
+
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
|
153 |
+
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
|
154 |
+
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
|
155 |
+
|
156 |
+
if self.config.out_ref:
|
157 |
+
_N = 16
|
158 |
+
self.gdt_convs_4 = nn.Sequential(nn.Conv2d(channels[1], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
159 |
+
self.gdt_convs_3 = nn.Sequential(nn.Conv2d(channels[2], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
160 |
+
self.gdt_convs_2 = nn.Sequential(nn.Conv2d(channels[3], _N, 3, 1, 1), nn.BatchNorm2d(_N) if self.config.batch_size > 1 else nn.Identity(), nn.ReLU(inplace=True))
|
161 |
+
|
162 |
+
self.gdt_convs_pred_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
163 |
+
self.gdt_convs_pred_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
164 |
+
self.gdt_convs_pred_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
165 |
+
|
166 |
+
self.gdt_convs_attn_4 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
167 |
+
self.gdt_convs_attn_3 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
168 |
+
self.gdt_convs_attn_2 = nn.Sequential(nn.Conv2d(_N, 1, 1, 1, 0))
|
169 |
+
|
170 |
+
def get_patches_batch(self, x, p):
|
171 |
+
_size_h, _size_w = p.shape[2:]
|
172 |
+
patches_batch = []
|
173 |
+
for idx in range(x.shape[0]):
|
174 |
+
columns_x = torch.split(x[idx], split_size_or_sections=_size_w, dim=-1)
|
175 |
+
patches_x = []
|
176 |
+
for column_x in columns_x:
|
177 |
+
patches_x += [p.unsqueeze(0) for p in torch.split(column_x, split_size_or_sections=_size_h, dim=-2)]
|
178 |
+
patch_sample = torch.cat(patches_x, dim=1)
|
179 |
+
patches_batch.append(patch_sample)
|
180 |
+
return torch.cat(patches_batch, dim=0)
|
181 |
+
|
182 |
+
def forward(self, features):
|
183 |
+
if self.training and self.config.out_ref:
|
184 |
+
outs_gdt_pred = []
|
185 |
+
outs_gdt_label = []
|
186 |
+
x, x1, x2, x3, x4, gdt_gt = features
|
187 |
+
else:
|
188 |
+
x, x1, x2, x3, x4 = features
|
189 |
+
outs = []
|
190 |
+
|
191 |
+
if self.config.dec_ipt:
|
192 |
+
patches_batch = self.get_patches_batch(x, x4) if self.split else x
|
193 |
+
x4 = torch.cat((x4, self.ipt_blk5(F.interpolate(patches_batch, size=x4.shape[2:], mode='bilinear', align_corners=True))), 1)
|
194 |
+
p4 = self.decoder_block4(x4)
|
195 |
+
m4 = self.conv_ms_spvn_4(p4) if self.config.ms_supervision else None
|
196 |
+
if self.config.out_ref:
|
197 |
+
p4_gdt = self.gdt_convs_4(p4)
|
198 |
+
if self.training:
|
199 |
+
# >> GT:
|
200 |
+
m4_dia = m4
|
201 |
+
gdt_label_main_4 = gdt_gt * F.interpolate(m4_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
202 |
+
outs_gdt_label.append(gdt_label_main_4)
|
203 |
+
# >> Pred:
|
204 |
+
gdt_pred_4 = self.gdt_convs_pred_4(p4_gdt)
|
205 |
+
outs_gdt_pred.append(gdt_pred_4)
|
206 |
+
gdt_attn_4 = self.gdt_convs_attn_4(p4_gdt).sigmoid()
|
207 |
+
# >> Finally:
|
208 |
+
p4 = p4 * gdt_attn_4
|
209 |
+
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
210 |
+
_p3 = _p4 + self.lateral_block4(x3)
|
211 |
+
|
212 |
+
if self.config.dec_ipt:
|
213 |
+
patches_batch = self.get_patches_batch(x, _p3) if self.split else x
|
214 |
+
_p3 = torch.cat((_p3, self.ipt_blk4(F.interpolate(patches_batch, size=x3.shape[2:], mode='bilinear', align_corners=True))), 1)
|
215 |
+
p3 = self.decoder_block3(_p3)
|
216 |
+
m3 = self.conv_ms_spvn_3(p3) if self.config.ms_supervision else None
|
217 |
+
if self.config.out_ref:
|
218 |
+
p3_gdt = self.gdt_convs_3(p3)
|
219 |
+
if self.training:
|
220 |
+
# >> GT:
|
221 |
+
# m3 --dilation--> m3_dia
|
222 |
+
# G_3^gt * m3_dia --> G_3^m, which is the label of gradient
|
223 |
+
m3_dia = m3
|
224 |
+
gdt_label_main_3 = gdt_gt * F.interpolate(m3_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
225 |
+
outs_gdt_label.append(gdt_label_main_3)
|
226 |
+
# >> Pred:
|
227 |
+
# p3 --conv--BN--> F_3^G, where F_3^G predicts the \hat{G_3} with xx
|
228 |
+
# F_3^G --sigmoid--> A_3^G
|
229 |
+
gdt_pred_3 = self.gdt_convs_pred_3(p3_gdt)
|
230 |
+
outs_gdt_pred.append(gdt_pred_3)
|
231 |
+
gdt_attn_3 = self.gdt_convs_attn_3(p3_gdt).sigmoid()
|
232 |
+
# >> Finally:
|
233 |
+
# p3 = p3 * A_3^G
|
234 |
+
p3 = p3 * gdt_attn_3
|
235 |
+
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
236 |
+
_p2 = _p3 + self.lateral_block3(x2)
|
237 |
+
|
238 |
+
if self.config.dec_ipt:
|
239 |
+
patches_batch = self.get_patches_batch(x, _p2) if self.split else x
|
240 |
+
_p2 = torch.cat((_p2, self.ipt_blk3(F.interpolate(patches_batch, size=x2.shape[2:], mode='bilinear', align_corners=True))), 1)
|
241 |
+
p2 = self.decoder_block2(_p2)
|
242 |
+
m2 = self.conv_ms_spvn_2(p2) if self.config.ms_supervision else None
|
243 |
+
if self.config.out_ref:
|
244 |
+
p2_gdt = self.gdt_convs_2(p2)
|
245 |
+
if self.training:
|
246 |
+
# >> GT:
|
247 |
+
m2_dia = m2
|
248 |
+
gdt_label_main_2 = gdt_gt * F.interpolate(m2_dia, size=gdt_gt.shape[2:], mode='bilinear', align_corners=True)
|
249 |
+
outs_gdt_label.append(gdt_label_main_2)
|
250 |
+
# >> Pred:
|
251 |
+
gdt_pred_2 = self.gdt_convs_pred_2(p2_gdt)
|
252 |
+
outs_gdt_pred.append(gdt_pred_2)
|
253 |
+
gdt_attn_2 = self.gdt_convs_attn_2(p2_gdt).sigmoid()
|
254 |
+
# >> Finally:
|
255 |
+
p2 = p2 * gdt_attn_2
|
256 |
+
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
257 |
+
_p1 = _p2 + self.lateral_block2(x1)
|
258 |
+
|
259 |
+
if self.config.dec_ipt:
|
260 |
+
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
261 |
+
_p1 = torch.cat((_p1, self.ipt_blk2(F.interpolate(patches_batch, size=x1.shape[2:], mode='bilinear', align_corners=True))), 1)
|
262 |
+
_p1 = self.decoder_block1(_p1)
|
263 |
+
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
264 |
+
|
265 |
+
if self.config.dec_ipt:
|
266 |
+
patches_batch = self.get_patches_batch(x, _p1) if self.split else x
|
267 |
+
_p1 = torch.cat((_p1, self.ipt_blk1(F.interpolate(patches_batch, size=x.shape[2:], mode='bilinear', align_corners=True))), 1)
|
268 |
+
p1_out = self.conv_out1(_p1)
|
269 |
+
|
270 |
+
if self.config.ms_supervision:
|
271 |
+
outs.append(m4)
|
272 |
+
outs.append(m3)
|
273 |
+
outs.append(m2)
|
274 |
+
outs.append(p1_out)
|
275 |
+
return outs if not (self.config.out_ref and self.training) else ([outs_gdt_pred, outs_gdt_label], outs)
|
276 |
+
|
277 |
+
|
278 |
+
class SimpleConvs(nn.Module):
|
279 |
+
def __init__(
|
280 |
+
self, in_channels: int, out_channels: int, inter_channels=64
|
281 |
+
) -> None:
|
282 |
+
super().__init__()
|
283 |
+
self.conv1 = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
|
284 |
+
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
|
285 |
+
|
286 |
+
def forward(self, x):
|
287 |
+
return self.conv_out(self.conv1(x))
|
BiRefNet_github/models/modules/aspp.py
ADDED
@@ -0,0 +1,119 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
import torch.nn.functional as F
|
4 |
+
from models.modules.deform_conv import DeformableConv2d
|
5 |
+
from config import Config
|
6 |
+
|
7 |
+
|
8 |
+
config = Config()
|
9 |
+
|
10 |
+
|
11 |
+
class _ASPPModule(nn.Module):
|
12 |
+
def __init__(self, in_channels, planes, kernel_size, padding, dilation):
|
13 |
+
super(_ASPPModule, self).__init__()
|
14 |
+
self.atrous_conv = nn.Conv2d(in_channels, planes, kernel_size=kernel_size,
|
15 |
+
stride=1, padding=padding, dilation=dilation, bias=False)
|
16 |
+
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
|
17 |
+
self.relu = nn.ReLU(inplace=True)
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
x = self.atrous_conv(x)
|
21 |
+
x = self.bn(x)
|
22 |
+
|
23 |
+
return self.relu(x)
|
24 |
+
|
25 |
+
|
26 |
+
class ASPP(nn.Module):
|
27 |
+
def __init__(self, in_channels=64, out_channels=None, output_stride=16):
|
28 |
+
super(ASPP, self).__init__()
|
29 |
+
self.down_scale = 1
|
30 |
+
if out_channels is None:
|
31 |
+
out_channels = in_channels
|
32 |
+
self.in_channelster = 256 // self.down_scale
|
33 |
+
if output_stride == 16:
|
34 |
+
dilations = [1, 6, 12, 18]
|
35 |
+
elif output_stride == 8:
|
36 |
+
dilations = [1, 12, 24, 36]
|
37 |
+
else:
|
38 |
+
raise NotImplementedError
|
39 |
+
|
40 |
+
self.aspp1 = _ASPPModule(in_channels, self.in_channelster, 1, padding=0, dilation=dilations[0])
|
41 |
+
self.aspp2 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[1], dilation=dilations[1])
|
42 |
+
self.aspp3 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[2], dilation=dilations[2])
|
43 |
+
self.aspp4 = _ASPPModule(in_channels, self.in_channelster, 3, padding=dilations[3], dilation=dilations[3])
|
44 |
+
|
45 |
+
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
46 |
+
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
|
47 |
+
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
48 |
+
nn.ReLU(inplace=True))
|
49 |
+
self.conv1 = nn.Conv2d(self.in_channelster * 5, out_channels, 1, bias=False)
|
50 |
+
self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
51 |
+
self.relu = nn.ReLU(inplace=True)
|
52 |
+
self.dropout = nn.Dropout(0.5)
|
53 |
+
|
54 |
+
def forward(self, x):
|
55 |
+
x1 = self.aspp1(x)
|
56 |
+
x2 = self.aspp2(x)
|
57 |
+
x3 = self.aspp3(x)
|
58 |
+
x4 = self.aspp4(x)
|
59 |
+
x5 = self.global_avg_pool(x)
|
60 |
+
x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
|
61 |
+
x = torch.cat((x1, x2, x3, x4, x5), dim=1)
|
62 |
+
|
63 |
+
x = self.conv1(x)
|
64 |
+
x = self.bn1(x)
|
65 |
+
x = self.relu(x)
|
66 |
+
|
67 |
+
return self.dropout(x)
|
68 |
+
|
69 |
+
|
70 |
+
##################### Deformable
|
71 |
+
class _ASPPModuleDeformable(nn.Module):
|
72 |
+
def __init__(self, in_channels, planes, kernel_size, padding):
|
73 |
+
super(_ASPPModuleDeformable, self).__init__()
|
74 |
+
self.atrous_conv = DeformableConv2d(in_channels, planes, kernel_size=kernel_size,
|
75 |
+
stride=1, padding=padding, bias=False)
|
76 |
+
self.bn = nn.BatchNorm2d(planes) if config.batch_size > 1 else nn.Identity()
|
77 |
+
self.relu = nn.ReLU(inplace=True)
|
78 |
+
|
79 |
+
def forward(self, x):
|
80 |
+
x = self.atrous_conv(x)
|
81 |
+
x = self.bn(x)
|
82 |
+
|
83 |
+
return self.relu(x)
|
84 |
+
|
85 |
+
|
86 |
+
class ASPPDeformable(nn.Module):
|
87 |
+
def __init__(self, in_channels, out_channels=None, parallel_block_sizes=[1, 3, 7]):
|
88 |
+
super(ASPPDeformable, self).__init__()
|
89 |
+
self.down_scale = 1
|
90 |
+
if out_channels is None:
|
91 |
+
out_channels = in_channels
|
92 |
+
self.in_channelster = 256 // self.down_scale
|
93 |
+
|
94 |
+
self.aspp1 = _ASPPModuleDeformable(in_channels, self.in_channelster, 1, padding=0)
|
95 |
+
self.aspp_deforms = nn.ModuleList([
|
96 |
+
_ASPPModuleDeformable(in_channels, self.in_channelster, conv_size, padding=int(conv_size//2)) for conv_size in parallel_block_sizes
|
97 |
+
])
|
98 |
+
|
99 |
+
self.global_avg_pool = nn.Sequential(nn.AdaptiveAvgPool2d((1, 1)),
|
100 |
+
nn.Conv2d(in_channels, self.in_channelster, 1, stride=1, bias=False),
|
101 |
+
nn.BatchNorm2d(self.in_channelster) if config.batch_size > 1 else nn.Identity(),
|
102 |
+
nn.ReLU(inplace=True))
|
103 |
+
self.conv1 = nn.Conv2d(self.in_channelster * (2 + len(self.aspp_deforms)), out_channels, 1, bias=False)
|
104 |
+
self.bn1 = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
105 |
+
self.relu = nn.ReLU(inplace=True)
|
106 |
+
self.dropout = nn.Dropout(0.5)
|
107 |
+
|
108 |
+
def forward(self, x):
|
109 |
+
x1 = self.aspp1(x)
|
110 |
+
x_aspp_deforms = [aspp_deform(x) for aspp_deform in self.aspp_deforms]
|
111 |
+
x5 = self.global_avg_pool(x)
|
112 |
+
x5 = F.interpolate(x5, size=x1.size()[2:], mode='bilinear', align_corners=True)
|
113 |
+
x = torch.cat((x1, *x_aspp_deforms, x5), dim=1)
|
114 |
+
|
115 |
+
x = self.conv1(x)
|
116 |
+
x = self.bn1(x)
|
117 |
+
x = self.relu(x)
|
118 |
+
|
119 |
+
return self.dropout(x)
|
BiRefNet_github/models/modules/attentions.py
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import init
|
5 |
+
|
6 |
+
|
7 |
+
class SEWeightModule(nn.Module):
|
8 |
+
def __init__(self, channels, reduction=16):
|
9 |
+
super(SEWeightModule, self).__init__()
|
10 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
11 |
+
self.fc1 = nn.Conv2d(channels, channels//reduction, kernel_size=1, padding=0)
|
12 |
+
self.relu = nn.ReLU(inplace=True)
|
13 |
+
self.fc2 = nn.Conv2d(channels//reduction, channels, kernel_size=1, padding=0)
|
14 |
+
self.sigmoid = nn.Sigmoid()
|
15 |
+
|
16 |
+
def forward(self, x):
|
17 |
+
out = self.avg_pool(x)
|
18 |
+
out = self.fc1(out)
|
19 |
+
out = self.relu(out)
|
20 |
+
out = self.fc2(out)
|
21 |
+
weight = self.sigmoid(out)
|
22 |
+
return weight
|
23 |
+
|
24 |
+
|
25 |
+
class PSA(nn.Module):
|
26 |
+
|
27 |
+
def __init__(self, in_channels, S=4, reduction=4):
|
28 |
+
super().__init__()
|
29 |
+
self.S = S
|
30 |
+
|
31 |
+
_convs = []
|
32 |
+
for i in range(S):
|
33 |
+
_convs.append(nn.Conv2d(in_channels//S, in_channels//S, kernel_size=2*(i+1)+1, padding=i+1))
|
34 |
+
self.convs = nn.ModuleList(_convs)
|
35 |
+
|
36 |
+
self.se_block = SEWeightModule(in_channels//S, reduction=S*reduction)
|
37 |
+
|
38 |
+
self.softmax = nn.Softmax(dim=1)
|
39 |
+
|
40 |
+
def forward(self, x):
|
41 |
+
b, c, h, w = x.size()
|
42 |
+
|
43 |
+
# Step1: SPC module
|
44 |
+
SPC_out = x.view(b, self.S, c//self.S, h, w) #bs,s,ci,h,w
|
45 |
+
for idx, conv in enumerate(self.convs):
|
46 |
+
SPC_out[:,idx,:,:,:] = conv(SPC_out[:,idx,:,:,:].clone())
|
47 |
+
|
48 |
+
# Step2: SE weight
|
49 |
+
se_out=[]
|
50 |
+
for idx in range(self.S):
|
51 |
+
se_out.append(self.se_block(SPC_out[:, idx, :, :, :]))
|
52 |
+
SE_out = torch.stack(se_out, dim=1)
|
53 |
+
SE_out = SE_out.expand_as(SPC_out)
|
54 |
+
|
55 |
+
# Step3: Softmax
|
56 |
+
softmax_out = self.softmax(SE_out)
|
57 |
+
|
58 |
+
# Step4: SPA
|
59 |
+
PSA_out = SPC_out * softmax_out
|
60 |
+
PSA_out = PSA_out.view(b, -1, h, w)
|
61 |
+
|
62 |
+
return PSA_out
|
63 |
+
|
64 |
+
|
65 |
+
class SGE(nn.Module):
|
66 |
+
|
67 |
+
def __init__(self, groups):
|
68 |
+
super().__init__()
|
69 |
+
self.groups=groups
|
70 |
+
self.avg_pool = nn.AdaptiveAvgPool2d(1)
|
71 |
+
self.weight=nn.Parameter(torch.zeros(1,groups,1,1))
|
72 |
+
self.bias=nn.Parameter(torch.zeros(1,groups,1,1))
|
73 |
+
self.sig=nn.Sigmoid()
|
74 |
+
|
75 |
+
def forward(self, x):
|
76 |
+
b, c, h,w=x.shape
|
77 |
+
x=x.view(b*self.groups,-1,h,w) #bs*g,dim//g,h,w
|
78 |
+
xn=x*self.avg_pool(x) #bs*g,dim//g,h,w
|
79 |
+
xn=xn.sum(dim=1,keepdim=True) #bs*g,1,h,w
|
80 |
+
t=xn.view(b*self.groups,-1) #bs*g,h*w
|
81 |
+
|
82 |
+
t=t-t.mean(dim=1,keepdim=True) #bs*g,h*w
|
83 |
+
std=t.std(dim=1,keepdim=True)+1e-5
|
84 |
+
t=t/std #bs*g,h*w
|
85 |
+
t=t.view(b,self.groups,h,w) #bs,g,h*w
|
86 |
+
|
87 |
+
t=t*self.weight+self.bias #bs,g,h*w
|
88 |
+
t=t.view(b*self.groups,1,h,w) #bs*g,1,h*w
|
89 |
+
x=x*self.sig(t)
|
90 |
+
x=x.view(b,c,h,w)
|
91 |
+
|
92 |
+
return x
|
93 |
+
|
BiRefNet_github/models/modules/decoder_blocks.py
ADDED
@@ -0,0 +1,101 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from models.modules.aspp import ASPP, ASPPDeformable
|
4 |
+
from models.modules.attentions import PSA, SGE
|
5 |
+
from config import Config
|
6 |
+
|
7 |
+
|
8 |
+
config = Config()
|
9 |
+
|
10 |
+
|
11 |
+
class BasicDecBlk(nn.Module):
|
12 |
+
def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
|
13 |
+
super(BasicDecBlk, self).__init__()
|
14 |
+
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
15 |
+
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
|
16 |
+
self.relu_in = nn.ReLU(inplace=True)
|
17 |
+
if config.dec_att == 'ASPP':
|
18 |
+
self.dec_att = ASPP(in_channels=inter_channels)
|
19 |
+
elif config.dec_att == 'ASPPDeformable':
|
20 |
+
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
21 |
+
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
22 |
+
self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
|
23 |
+
self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
24 |
+
|
25 |
+
def forward(self, x):
|
26 |
+
x = self.conv_in(x)
|
27 |
+
x = self.bn_in(x)
|
28 |
+
x = self.relu_in(x)
|
29 |
+
if hasattr(self, 'dec_att'):
|
30 |
+
x = self.dec_att(x)
|
31 |
+
x = self.conv_out(x)
|
32 |
+
x = self.bn_out(x)
|
33 |
+
return x
|
34 |
+
|
35 |
+
|
36 |
+
class ResBlk(nn.Module):
|
37 |
+
def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
|
38 |
+
super(ResBlk, self).__init__()
|
39 |
+
if out_channels is None:
|
40 |
+
out_channels = in_channels
|
41 |
+
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
42 |
+
|
43 |
+
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, padding=1)
|
44 |
+
self.bn_in = nn.BatchNorm2d(inter_channels) if config.batch_size > 1 else nn.Identity()
|
45 |
+
self.relu_in = nn.ReLU(inplace=True)
|
46 |
+
|
47 |
+
if config.dec_att == 'ASPP':
|
48 |
+
self.dec_att = ASPP(in_channels=inter_channels)
|
49 |
+
elif config.dec_att == 'ASPPDeformable':
|
50 |
+
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
51 |
+
|
52 |
+
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, padding=1)
|
53 |
+
self.bn_out = nn.BatchNorm2d(out_channels) if config.batch_size > 1 else nn.Identity()
|
54 |
+
|
55 |
+
self.conv_resi = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
|
56 |
+
|
57 |
+
def forward(self, x):
|
58 |
+
_x = self.conv_resi(x)
|
59 |
+
x = self.conv_in(x)
|
60 |
+
x = self.bn_in(x)
|
61 |
+
x = self.relu_in(x)
|
62 |
+
if hasattr(self, 'dec_att'):
|
63 |
+
x = self.dec_att(x)
|
64 |
+
x = self.conv_out(x)
|
65 |
+
x = self.bn_out(x)
|
66 |
+
return x + _x
|
67 |
+
|
68 |
+
|
69 |
+
class HierarAttDecBlk(nn.Module):
|
70 |
+
def __init__(self, in_channels=64, out_channels=None, inter_channels=64):
|
71 |
+
super(HierarAttDecBlk, self).__init__()
|
72 |
+
if out_channels is None:
|
73 |
+
out_channels = in_channels
|
74 |
+
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
75 |
+
self.split_y = 8 # must be divided by channels of all intermediate features
|
76 |
+
self.split_x = 8
|
77 |
+
|
78 |
+
self.conv_in = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
|
79 |
+
|
80 |
+
self.psa = PSA(inter_channels*self.split_y*self.split_x, S=config.batch_size)
|
81 |
+
self.sge = SGE(groups=config.batch_size)
|
82 |
+
|
83 |
+
if config.dec_att == 'ASPP':
|
84 |
+
self.dec_att = ASPP(in_channels=inter_channels)
|
85 |
+
elif config.dec_att == 'ASPPDeformable':
|
86 |
+
self.dec_att = ASPPDeformable(in_channels=inter_channels)
|
87 |
+
self.conv_out = nn.Conv2d(inter_channels, out_channels, 3, 1, 1)
|
88 |
+
|
89 |
+
def forward(self, x):
|
90 |
+
x = self.conv_in(x)
|
91 |
+
N, C, H, W = x.shape
|
92 |
+
x_patchs = x.reshape(N, -1, H//self.split_y, W//self.split_x)
|
93 |
+
|
94 |
+
# Hierarchical attention: group attention X patch spatial attention
|
95 |
+
x_patchs = self.psa(x_patchs) # Group Channel Attention -- each group is a single image
|
96 |
+
x_patchs = self.sge(x_patchs) # Patch Spatial Attention
|
97 |
+
x = x.reshape(N, C, H, W)
|
98 |
+
if hasattr(self, 'dec_att'):
|
99 |
+
x = self.dec_att(x)
|
100 |
+
x = self.conv_out(x)
|
101 |
+
return x
|
BiRefNet_github/models/modules/deform_conv.py
ADDED
@@ -0,0 +1,66 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torchvision.ops import deform_conv2d
|
4 |
+
|
5 |
+
|
6 |
+
class DeformableConv2d(nn.Module):
|
7 |
+
def __init__(self,
|
8 |
+
in_channels,
|
9 |
+
out_channels,
|
10 |
+
kernel_size=3,
|
11 |
+
stride=1,
|
12 |
+
padding=1,
|
13 |
+
bias=False):
|
14 |
+
|
15 |
+
super(DeformableConv2d, self).__init__()
|
16 |
+
|
17 |
+
assert type(kernel_size) == tuple or type(kernel_size) == int
|
18 |
+
|
19 |
+
kernel_size = kernel_size if type(kernel_size) == tuple else (kernel_size, kernel_size)
|
20 |
+
self.stride = stride if type(stride) == tuple else (stride, stride)
|
21 |
+
self.padding = padding
|
22 |
+
|
23 |
+
self.offset_conv = nn.Conv2d(in_channels,
|
24 |
+
2 * kernel_size[0] * kernel_size[1],
|
25 |
+
kernel_size=kernel_size,
|
26 |
+
stride=stride,
|
27 |
+
padding=self.padding,
|
28 |
+
bias=True)
|
29 |
+
|
30 |
+
nn.init.constant_(self.offset_conv.weight, 0.)
|
31 |
+
nn.init.constant_(self.offset_conv.bias, 0.)
|
32 |
+
|
33 |
+
self.modulator_conv = nn.Conv2d(in_channels,
|
34 |
+
1 * kernel_size[0] * kernel_size[1],
|
35 |
+
kernel_size=kernel_size,
|
36 |
+
stride=stride,
|
37 |
+
padding=self.padding,
|
38 |
+
bias=True)
|
39 |
+
|
40 |
+
nn.init.constant_(self.modulator_conv.weight, 0.)
|
41 |
+
nn.init.constant_(self.modulator_conv.bias, 0.)
|
42 |
+
|
43 |
+
self.regular_conv = nn.Conv2d(in_channels,
|
44 |
+
out_channels=out_channels,
|
45 |
+
kernel_size=kernel_size,
|
46 |
+
stride=stride,
|
47 |
+
padding=self.padding,
|
48 |
+
bias=bias)
|
49 |
+
|
50 |
+
def forward(self, x):
|
51 |
+
#h, w = x.shape[2:]
|
52 |
+
#max_offset = max(h, w)/4.
|
53 |
+
|
54 |
+
offset = self.offset_conv(x)#.clamp(-max_offset, max_offset)
|
55 |
+
modulator = 2. * torch.sigmoid(self.modulator_conv(x))
|
56 |
+
|
57 |
+
x = deform_conv2d(
|
58 |
+
input=x,
|
59 |
+
offset=offset,
|
60 |
+
weight=self.regular_conv.weight,
|
61 |
+
bias=self.regular_conv.bias,
|
62 |
+
padding=self.padding,
|
63 |
+
mask=modulator,
|
64 |
+
stride=self.stride,
|
65 |
+
)
|
66 |
+
return x
|
BiRefNet_github/models/modules/ing.py
ADDED
@@ -0,0 +1,29 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from models.modules.mlp import MLPLayer
|
3 |
+
|
4 |
+
|
5 |
+
class BlockA(nn.Module):
|
6 |
+
def __init__(self, in_channels=64, out_channels=64, inter_channels=64, mlp_ratio=4.):
|
7 |
+
super(BlockA, self).__init__()
|
8 |
+
inter_channels = in_channels
|
9 |
+
self.conv = nn.Conv2d(in_channels, inter_channels, 3, 1, 1)
|
10 |
+
self.norm1 = nn.LayerNorm(inter_channels)
|
11 |
+
self.ffn = MLPLayer(in_features=inter_channels,
|
12 |
+
hidden_features=int(inter_channels * mlp_ratio),
|
13 |
+
act_layer=nn.GELU,
|
14 |
+
drop=0.)
|
15 |
+
self.norm2 = nn.LayerNorm(inter_channels)
|
16 |
+
|
17 |
+
def forward(self, x):
|
18 |
+
B, C, H, W = x.shape
|
19 |
+
_x = self.conv(x)
|
20 |
+
_x = _x.flatten(2).transpose(1, 2)
|
21 |
+
_x = self.norm1(_x)
|
22 |
+
x = x.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
23 |
+
|
24 |
+
x = x + _x
|
25 |
+
_x1 = self.ffn(x)
|
26 |
+
_x1 = self.norm2(_x1)
|
27 |
+
_x1 = _x1.reshape(B, H, W, -1).permute(0, 3, 1, 2).contiguous()
|
28 |
+
x = x + _x1
|
29 |
+
return x
|
BiRefNet_github/models/modules/lateral_blocks.py
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
+
from functools import partial
|
6 |
+
|
7 |
+
from config import Config
|
8 |
+
|
9 |
+
|
10 |
+
config = Config()
|
11 |
+
|
12 |
+
|
13 |
+
class BasicLatBlk(nn.Module):
|
14 |
+
def __init__(self, in_channels=64, out_channels=64, inter_channels=64):
|
15 |
+
super(BasicLatBlk, self).__init__()
|
16 |
+
inter_channels = in_channels // 4 if config.dec_channels_inter == 'adap' else 64
|
17 |
+
self.conv = nn.Conv2d(in_channels, out_channels, 1, 1, 0)
|
18 |
+
|
19 |
+
def forward(self, x):
|
20 |
+
x = self.conv(x)
|
21 |
+
return x
|
BiRefNet_github/models/modules/mlp.py
ADDED
@@ -0,0 +1,118 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from functools import partial
|
4 |
+
|
5 |
+
from timm.models.layers import DropPath, to_2tuple, trunc_normal_
|
6 |
+
from timm.models.registry import register_model
|
7 |
+
|
8 |
+
import math
|
9 |
+
|
10 |
+
|
11 |
+
class MLPLayer(nn.Module):
|
12 |
+
def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):
|
13 |
+
super().__init__()
|
14 |
+
out_features = out_features or in_features
|
15 |
+
hidden_features = hidden_features or in_features
|
16 |
+
self.fc1 = nn.Linear(in_features, hidden_features)
|
17 |
+
self.act = act_layer()
|
18 |
+
self.fc2 = nn.Linear(hidden_features, out_features)
|
19 |
+
self.drop = nn.Dropout(drop)
|
20 |
+
|
21 |
+
def forward(self, x):
|
22 |
+
x = self.fc1(x)
|
23 |
+
x = self.act(x)
|
24 |
+
x = self.drop(x)
|
25 |
+
x = self.fc2(x)
|
26 |
+
x = self.drop(x)
|
27 |
+
return x
|
28 |
+
|
29 |
+
|
30 |
+
class Attention(nn.Module):
|
31 |
+
def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., sr_ratio=1):
|
32 |
+
super().__init__()
|
33 |
+
assert dim % num_heads == 0, f"dim {dim} should be divided by num_heads {num_heads}."
|
34 |
+
|
35 |
+
self.dim = dim
|
36 |
+
self.num_heads = num_heads
|
37 |
+
head_dim = dim // num_heads
|
38 |
+
self.scale = qk_scale or head_dim ** -0.5
|
39 |
+
|
40 |
+
self.q = nn.Linear(dim, dim, bias=qkv_bias)
|
41 |
+
self.kv = nn.Linear(dim, dim * 2, bias=qkv_bias)
|
42 |
+
self.attn_drop = nn.Dropout(attn_drop)
|
43 |
+
self.proj = nn.Linear(dim, dim)
|
44 |
+
self.proj_drop = nn.Dropout(proj_drop)
|
45 |
+
|
46 |
+
self.sr_ratio = sr_ratio
|
47 |
+
if sr_ratio > 1:
|
48 |
+
self.sr = nn.Conv2d(dim, dim, kernel_size=sr_ratio, stride=sr_ratio)
|
49 |
+
self.norm = nn.LayerNorm(dim)
|
50 |
+
|
51 |
+
def forward(self, x, H, W):
|
52 |
+
B, N, C = x.shape
|
53 |
+
q = self.q(x).reshape(B, N, self.num_heads, C // self.num_heads).permute(0, 2, 1, 3)
|
54 |
+
|
55 |
+
if self.sr_ratio > 1:
|
56 |
+
x_ = x.permute(0, 2, 1).reshape(B, C, H, W)
|
57 |
+
x_ = self.sr(x_).reshape(B, C, -1).permute(0, 2, 1)
|
58 |
+
x_ = self.norm(x_)
|
59 |
+
kv = self.kv(x_).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
60 |
+
else:
|
61 |
+
kv = self.kv(x).reshape(B, -1, 2, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)
|
62 |
+
k, v = kv[0], kv[1]
|
63 |
+
|
64 |
+
attn = (q @ k.transpose(-2, -1)) * self.scale
|
65 |
+
attn = attn.softmax(dim=-1)
|
66 |
+
attn = self.attn_drop(attn)
|
67 |
+
|
68 |
+
x = (attn @ v).transpose(1, 2).reshape(B, N, C)
|
69 |
+
x = self.proj(x)
|
70 |
+
x = self.proj_drop(x)
|
71 |
+
return x
|
72 |
+
|
73 |
+
|
74 |
+
class Block(nn.Module):
|
75 |
+
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0.,
|
76 |
+
drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, sr_ratio=1):
|
77 |
+
super().__init__()
|
78 |
+
self.norm1 = norm_layer(dim)
|
79 |
+
self.attn = Attention(
|
80 |
+
dim,
|
81 |
+
num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,
|
82 |
+
attn_drop=attn_drop, proj_drop=drop, sr_ratio=sr_ratio)
|
83 |
+
# NOTE: drop path for stochastic depth, we shall see if this is better than dropout here
|
84 |
+
self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity()
|
85 |
+
self.norm2 = norm_layer(dim)
|
86 |
+
mlp_hidden_dim = int(dim * mlp_ratio)
|
87 |
+
self.mlp = MLPLayer(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop)
|
88 |
+
|
89 |
+
def forward(self, x, H, W):
|
90 |
+
x = x + self.drop_path(self.attn(self.norm1(x), H, W))
|
91 |
+
x = x + self.drop_path(self.mlp(self.norm2(x), H, W))
|
92 |
+
return x
|
93 |
+
|
94 |
+
|
95 |
+
class OverlapPatchEmbed(nn.Module):
|
96 |
+
""" Image to Patch Embedding
|
97 |
+
"""
|
98 |
+
|
99 |
+
def __init__(self, img_size=224, patch_size=7, stride=4, in_channels=3, embed_dim=768):
|
100 |
+
super().__init__()
|
101 |
+
img_size = to_2tuple(img_size)
|
102 |
+
patch_size = to_2tuple(patch_size)
|
103 |
+
|
104 |
+
self.img_size = img_size
|
105 |
+
self.patch_size = patch_size
|
106 |
+
self.H, self.W = img_size[0] // patch_size[0], img_size[1] // patch_size[1]
|
107 |
+
self.num_patches = self.H * self.W
|
108 |
+
self.proj = nn.Conv2d(in_channels, embed_dim, kernel_size=patch_size, stride=stride,
|
109 |
+
padding=(patch_size[0] // 2, patch_size[1] // 2))
|
110 |
+
self.norm = nn.LayerNorm(embed_dim)
|
111 |
+
|
112 |
+
def forward(self, x):
|
113 |
+
x = self.proj(x)
|
114 |
+
_, _, H, W = x.shape
|
115 |
+
x = x.flatten(2).transpose(1, 2)
|
116 |
+
x = self.norm(x)
|
117 |
+
return x, H, W
|
118 |
+
|
BiRefNet_github/models/modules/prompt_encoder.py
ADDED
@@ -0,0 +1,222 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy as np
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from typing import Any, Optional, Tuple, Type
|
5 |
+
|
6 |
+
|
7 |
+
class PromptEncoder(nn.Module):
|
8 |
+
def __init__(
|
9 |
+
self,
|
10 |
+
embed_dim=256,
|
11 |
+
image_embedding_size=1024,
|
12 |
+
input_image_size=(1024, 1024),
|
13 |
+
mask_in_chans=16,
|
14 |
+
activation=nn.GELU
|
15 |
+
) -> None:
|
16 |
+
super().__init__()
|
17 |
+
"""
|
18 |
+
Codes are partially from SAM: https://github.com/facebookresearch/segment-anything/blob/6fdee8f2727f4506cfbbe553e23b895e27956588/segment_anything/modeling/prompt_encoder.py.
|
19 |
+
|
20 |
+
Arguments:
|
21 |
+
embed_dim (int): The prompts' embedding dimension
|
22 |
+
image_embedding_size (tuple(int, int)): The spatial size of the
|
23 |
+
image embedding, as (H, W).
|
24 |
+
input_image_size (int): The padded size of the image as input
|
25 |
+
to the image encoder, as (H, W).
|
26 |
+
mask_in_chans (int): The number of hidden channels used for
|
27 |
+
encoding input masks.
|
28 |
+
activation (nn.Module): The activation to use when encoding
|
29 |
+
input masks.
|
30 |
+
"""
|
31 |
+
super().__init__()
|
32 |
+
self.embed_dim = embed_dim
|
33 |
+
self.input_image_size = input_image_size
|
34 |
+
self.image_embedding_size = image_embedding_size
|
35 |
+
self.pe_layer = PositionEmbeddingRandom(embed_dim // 2)
|
36 |
+
|
37 |
+
self.num_point_embeddings: int = 4 # pos/neg point + 2 box corners
|
38 |
+
point_embeddings = [nn.Embedding(1, embed_dim) for i in range(self.num_point_embeddings)]
|
39 |
+
self.point_embeddings = nn.ModuleList(point_embeddings)
|
40 |
+
self.not_a_point_embed = nn.Embedding(1, embed_dim)
|
41 |
+
|
42 |
+
self.mask_input_size = (4 * image_embedding_size[0], 4 * image_embedding_size[1])
|
43 |
+
self.mask_downscaling = nn.Sequential(
|
44 |
+
nn.Conv2d(1, mask_in_chans // 4, kernel_size=2, stride=2),
|
45 |
+
LayerNorm2d(mask_in_chans // 4),
|
46 |
+
activation(),
|
47 |
+
nn.Conv2d(mask_in_chans // 4, mask_in_chans, kernel_size=2, stride=2),
|
48 |
+
LayerNorm2d(mask_in_chans),
|
49 |
+
activation(),
|
50 |
+
nn.Conv2d(mask_in_chans, embed_dim, kernel_size=1),
|
51 |
+
)
|
52 |
+
self.no_mask_embed = nn.Embedding(1, embed_dim)
|
53 |
+
|
54 |
+
def get_dense_pe(self) -> torch.Tensor:
|
55 |
+
"""
|
56 |
+
Returns the positional encoding used to encode point prompts,
|
57 |
+
applied to a dense set of points the shape of the image encoding.
|
58 |
+
|
59 |
+
Returns:
|
60 |
+
torch.Tensor: Positional encoding with shape
|
61 |
+
1x(embed_dim)x(embedding_h)x(embedding_w)
|
62 |
+
"""
|
63 |
+
return self.pe_layer(self.image_embedding_size).unsqueeze(0)
|
64 |
+
|
65 |
+
def _embed_points(
|
66 |
+
self,
|
67 |
+
points: torch.Tensor,
|
68 |
+
labels: torch.Tensor,
|
69 |
+
pad: bool,
|
70 |
+
) -> torch.Tensor:
|
71 |
+
"""Embeds point prompts."""
|
72 |
+
points = points + 0.5 # Shift to center of pixel
|
73 |
+
if pad:
|
74 |
+
padding_point = torch.zeros((points.shape[0], 1, 2), device=points.device)
|
75 |
+
padding_label = -torch.ones((labels.shape[0], 1), device=labels.device)
|
76 |
+
points = torch.cat([points, padding_point], dim=1)
|
77 |
+
labels = torch.cat([labels, padding_label], dim=1)
|
78 |
+
point_embedding = self.pe_layer.forward_with_coords(points, self.input_image_size)
|
79 |
+
point_embedding[labels == -1] = 0.0
|
80 |
+
point_embedding[labels == -1] += self.not_a_point_embed.weight
|
81 |
+
point_embedding[labels == 0] += self.point_embeddings[0].weight
|
82 |
+
point_embedding[labels == 1] += self.point_embeddings[1].weight
|
83 |
+
return point_embedding
|
84 |
+
|
85 |
+
def _embed_boxes(self, boxes: torch.Tensor) -> torch.Tensor:
|
86 |
+
"""Embeds box prompts."""
|
87 |
+
boxes = boxes + 0.5 # Shift to center of pixel
|
88 |
+
coords = boxes.reshape(-1, 2, 2)
|
89 |
+
corner_embedding = self.pe_layer.forward_with_coords(coords, self.input_image_size)
|
90 |
+
corner_embedding[:, 0, :] += self.point_embeddings[2].weight
|
91 |
+
corner_embedding[:, 1, :] += self.point_embeddings[3].weight
|
92 |
+
return corner_embedding
|
93 |
+
|
94 |
+
def _embed_masks(self, masks: torch.Tensor) -> torch.Tensor:
|
95 |
+
"""Embeds mask inputs."""
|
96 |
+
mask_embedding = self.mask_downscaling(masks)
|
97 |
+
return mask_embedding
|
98 |
+
|
99 |
+
def _get_batch_size(
|
100 |
+
self,
|
101 |
+
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
102 |
+
boxes: Optional[torch.Tensor],
|
103 |
+
masks: Optional[torch.Tensor],
|
104 |
+
) -> int:
|
105 |
+
"""
|
106 |
+
Gets the batch size of the output given the batch size of the input prompts.
|
107 |
+
"""
|
108 |
+
if points is not None:
|
109 |
+
return points[0].shape[0]
|
110 |
+
elif boxes is not None:
|
111 |
+
return boxes.shape[0]
|
112 |
+
elif masks is not None:
|
113 |
+
return masks.shape[0]
|
114 |
+
else:
|
115 |
+
return 1
|
116 |
+
|
117 |
+
def _get_device(self) -> torch.device:
|
118 |
+
return self.point_embeddings[0].weight.device
|
119 |
+
|
120 |
+
def forward(
|
121 |
+
self,
|
122 |
+
points: Optional[Tuple[torch.Tensor, torch.Tensor]],
|
123 |
+
boxes: Optional[torch.Tensor],
|
124 |
+
masks: Optional[torch.Tensor],
|
125 |
+
) -> Tuple[torch.Tensor, torch.Tensor]:
|
126 |
+
"""
|
127 |
+
Embeds different types of prompts, returning both sparse and dense
|
128 |
+
embeddings.
|
129 |
+
|
130 |
+
Arguments:
|
131 |
+
points (tuple(torch.Tensor, torch.Tensor) or none): point coordinates
|
132 |
+
and labels to embed.
|
133 |
+
boxes (torch.Tensor or none): boxes to embed
|
134 |
+
masks (torch.Tensor or none): masks to embed
|
135 |
+
|
136 |
+
Returns:
|
137 |
+
torch.Tensor: sparse embeddings for the points and boxes, with shape
|
138 |
+
BxNx(embed_dim), where N is determined by the number of input points
|
139 |
+
and boxes.
|
140 |
+
torch.Tensor: dense embeddings for the masks, in the shape
|
141 |
+
Bx(embed_dim)x(embed_H)x(embed_W)
|
142 |
+
"""
|
143 |
+
bs = self._get_batch_size(points, boxes, masks)
|
144 |
+
sparse_embeddings = torch.empty((bs, 0, self.embed_dim), device=self._get_device())
|
145 |
+
if points is not None:
|
146 |
+
coords, labels = points
|
147 |
+
point_embeddings = self._embed_points(coords, labels, pad=(boxes is None))
|
148 |
+
sparse_embeddings = torch.cat([sparse_embeddings, point_embeddings], dim=1)
|
149 |
+
if boxes is not None:
|
150 |
+
box_embeddings = self._embed_boxes(boxes)
|
151 |
+
sparse_embeddings = torch.cat([sparse_embeddings, box_embeddings], dim=1)
|
152 |
+
|
153 |
+
if masks is not None:
|
154 |
+
dense_embeddings = self._embed_masks(masks)
|
155 |
+
else:
|
156 |
+
dense_embeddings = self.no_mask_embed.weight.reshape(1, -1, 1, 1).expand(
|
157 |
+
bs, -1, self.image_embedding_size[0], self.image_embedding_size[1]
|
158 |
+
)
|
159 |
+
|
160 |
+
return sparse_embeddings, dense_embeddings
|
161 |
+
|
162 |
+
|
163 |
+
class PositionEmbeddingRandom(nn.Module):
|
164 |
+
"""
|
165 |
+
Positional encoding using random spatial frequencies.
|
166 |
+
"""
|
167 |
+
|
168 |
+
def __init__(self, num_pos_feats: int = 64, scale: Optional[float] = None) -> None:
|
169 |
+
super().__init__()
|
170 |
+
if scale is None or scale <= 0.0:
|
171 |
+
scale = 1.0
|
172 |
+
self.register_buffer(
|
173 |
+
"positional_encoding_gaussian_matrix",
|
174 |
+
scale * torch.randn((2, num_pos_feats)),
|
175 |
+
)
|
176 |
+
|
177 |
+
def _pe_encoding(self, coords: torch.Tensor) -> torch.Tensor:
|
178 |
+
"""Positionally encode points that are normalized to [0,1]."""
|
179 |
+
# assuming coords are in [0, 1]^2 square and have d_1 x ... x d_n x 2 shape
|
180 |
+
coords = 2 * coords - 1
|
181 |
+
coords = coords @ self.positional_encoding_gaussian_matrix
|
182 |
+
coords = 2 * np.pi * coords
|
183 |
+
# outputs d_1 x ... x d_n x C shape
|
184 |
+
return torch.cat([torch.sin(coords), torch.cos(coords)], dim=-1)
|
185 |
+
|
186 |
+
def forward(self, size: Tuple[int, int]) -> torch.Tensor:
|
187 |
+
"""Generate positional encoding for a grid of the specified size."""
|
188 |
+
h, w = size
|
189 |
+
device: Any = self.positional_encoding_gaussian_matrix.device
|
190 |
+
grid = torch.ones((h, w), device=device, dtype=torch.float32)
|
191 |
+
y_embed = grid.cumsum(dim=0) - 0.5
|
192 |
+
x_embed = grid.cumsum(dim=1) - 0.5
|
193 |
+
y_embed = y_embed / h
|
194 |
+
x_embed = x_embed / w
|
195 |
+
|
196 |
+
pe = self._pe_encoding(torch.stack([x_embed, y_embed], dim=-1))
|
197 |
+
return pe.permute(2, 0, 1) # C x H x W
|
198 |
+
|
199 |
+
def forward_with_coords(
|
200 |
+
self, coords_input: torch.Tensor, image_size: Tuple[int, int]
|
201 |
+
) -> torch.Tensor:
|
202 |
+
"""Positionally encode points that are not normalized to [0,1]."""
|
203 |
+
coords = coords_input.clone()
|
204 |
+
coords[:, :, 0] = coords[:, :, 0] / image_size[1]
|
205 |
+
coords[:, :, 1] = coords[:, :, 1] / image_size[0]
|
206 |
+
return self._pe_encoding(coords.to(torch.float)) # B x N x C
|
207 |
+
|
208 |
+
|
209 |
+
class LayerNorm2d(nn.Module):
|
210 |
+
def __init__(self, num_channels: int, eps: float = 1e-6) -> None:
|
211 |
+
super().__init__()
|
212 |
+
self.weight = nn.Parameter(torch.ones(num_channels))
|
213 |
+
self.bias = nn.Parameter(torch.zeros(num_channels))
|
214 |
+
self.eps = eps
|
215 |
+
|
216 |
+
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
217 |
+
u = x.mean(1, keepdim=True)
|
218 |
+
s = (x - u).pow(2).mean(1, keepdim=True)
|
219 |
+
x = (x - u) / torch.sqrt(s + self.eps)
|
220 |
+
x = self.weight[:, None, None] * x + self.bias[:, None, None]
|
221 |
+
return x
|
222 |
+
|
BiRefNet_github/models/modules/utils.py
ADDED
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
|
3 |
+
|
4 |
+
def build_act_layer(act_layer):
|
5 |
+
if act_layer == 'ReLU':
|
6 |
+
return nn.ReLU(inplace=True)
|
7 |
+
elif act_layer == 'SiLU':
|
8 |
+
return nn.SiLU(inplace=True)
|
9 |
+
elif act_layer == 'GELU':
|
10 |
+
return nn.GELU()
|
11 |
+
|
12 |
+
raise NotImplementedError(f'build_act_layer does not support {act_layer}')
|
13 |
+
|
14 |
+
|
15 |
+
def build_norm_layer(dim,
|
16 |
+
norm_layer,
|
17 |
+
in_format='channels_last',
|
18 |
+
out_format='channels_last',
|
19 |
+
eps=1e-6):
|
20 |
+
layers = []
|
21 |
+
if norm_layer == 'BN':
|
22 |
+
if in_format == 'channels_last':
|
23 |
+
layers.append(to_channels_first())
|
24 |
+
layers.append(nn.BatchNorm2d(dim))
|
25 |
+
if out_format == 'channels_last':
|
26 |
+
layers.append(to_channels_last())
|
27 |
+
elif norm_layer == 'LN':
|
28 |
+
if in_format == 'channels_first':
|
29 |
+
layers.append(to_channels_last())
|
30 |
+
layers.append(nn.LayerNorm(dim, eps=eps))
|
31 |
+
if out_format == 'channels_first':
|
32 |
+
layers.append(to_channels_first())
|
33 |
+
else:
|
34 |
+
raise NotImplementedError(
|
35 |
+
f'build_norm_layer does not support {norm_layer}')
|
36 |
+
return nn.Sequential(*layers)
|
37 |
+
|
38 |
+
|
39 |
+
class to_channels_first(nn.Module):
|
40 |
+
|
41 |
+
def __init__(self):
|
42 |
+
super().__init__()
|
43 |
+
|
44 |
+
def forward(self, x):
|
45 |
+
return x.permute(0, 3, 1, 2)
|
46 |
+
|
47 |
+
|
48 |
+
class to_channels_last(nn.Module):
|
49 |
+
|
50 |
+
def __init__(self):
|
51 |
+
super().__init__()
|
52 |
+
|
53 |
+
def forward(self, x):
|
54 |
+
return x.permute(0, 2, 3, 1)
|
BiRefNet_github/models/refinement/refiner.py
ADDED
@@ -0,0 +1,253 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from collections import OrderedDict
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.nn.functional as F
|
7 |
+
from torchvision.models import vgg16, vgg16_bn
|
8 |
+
from torchvision.models import resnet50
|
9 |
+
|
10 |
+
from config import Config
|
11 |
+
from dataset import class_labels_TR_sorted
|
12 |
+
from models.backbones.build_backbone import build_backbone
|
13 |
+
from models.modules.decoder_blocks import BasicDecBlk
|
14 |
+
from models.modules.lateral_blocks import BasicLatBlk
|
15 |
+
from models.modules.ing import *
|
16 |
+
from models.refinement.stem_layer import StemLayer
|
17 |
+
|
18 |
+
|
19 |
+
class RefinerPVTInChannels4(nn.Module):
|
20 |
+
def __init__(self, in_channels=3+1):
|
21 |
+
super(RefinerPVTInChannels4, self).__init__()
|
22 |
+
self.config = Config()
|
23 |
+
self.epoch = 1
|
24 |
+
self.bb = build_backbone(self.config.bb, params_settings='in_channels=4')
|
25 |
+
|
26 |
+
lateral_channels_in_collection = {
|
27 |
+
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
28 |
+
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
29 |
+
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
30 |
+
}
|
31 |
+
channels = lateral_channels_in_collection[self.config.bb]
|
32 |
+
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
33 |
+
|
34 |
+
self.decoder = Decoder(channels)
|
35 |
+
|
36 |
+
if 0:
|
37 |
+
for key, value in self.named_parameters():
|
38 |
+
if 'bb.' in key:
|
39 |
+
value.requires_grad = False
|
40 |
+
|
41 |
+
def forward(self, x):
|
42 |
+
if isinstance(x, list):
|
43 |
+
x = torch.cat(x, dim=1)
|
44 |
+
########## Encoder ##########
|
45 |
+
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
46 |
+
x1 = self.bb.conv1(x)
|
47 |
+
x2 = self.bb.conv2(x1)
|
48 |
+
x3 = self.bb.conv3(x2)
|
49 |
+
x4 = self.bb.conv4(x3)
|
50 |
+
else:
|
51 |
+
x1, x2, x3, x4 = self.bb(x)
|
52 |
+
|
53 |
+
x4 = self.squeeze_module(x4)
|
54 |
+
|
55 |
+
########## Decoder ##########
|
56 |
+
|
57 |
+
features = [x, x1, x2, x3, x4]
|
58 |
+
scaled_preds = self.decoder(features)
|
59 |
+
|
60 |
+
return scaled_preds
|
61 |
+
|
62 |
+
|
63 |
+
class Refiner(nn.Module):
|
64 |
+
def __init__(self, in_channels=3+1):
|
65 |
+
super(Refiner, self).__init__()
|
66 |
+
self.config = Config()
|
67 |
+
self.epoch = 1
|
68 |
+
self.stem_layer = StemLayer(in_channels=in_channels, inter_channels=48, out_channels=3, norm_layer='BN' if self.config.batch_size > 1 else 'LN')
|
69 |
+
self.bb = build_backbone(self.config.bb)
|
70 |
+
|
71 |
+
lateral_channels_in_collection = {
|
72 |
+
'vgg16': [512, 256, 128, 64], 'vgg16bn': [512, 256, 128, 64], 'resnet50': [1024, 512, 256, 64],
|
73 |
+
'pvt_v2_b2': [512, 320, 128, 64], 'pvt_v2_b5': [512, 320, 128, 64],
|
74 |
+
'swin_v1_b': [1024, 512, 256, 128], 'swin_v1_l': [1536, 768, 384, 192],
|
75 |
+
}
|
76 |
+
channels = lateral_channels_in_collection[self.config.bb]
|
77 |
+
self.squeeze_module = BasicDecBlk(channels[0], channels[0])
|
78 |
+
|
79 |
+
self.decoder = Decoder(channels)
|
80 |
+
|
81 |
+
if 0:
|
82 |
+
for key, value in self.named_parameters():
|
83 |
+
if 'bb.' in key:
|
84 |
+
value.requires_grad = False
|
85 |
+
|
86 |
+
def forward(self, x):
|
87 |
+
if isinstance(x, list):
|
88 |
+
x = torch.cat(x, dim=1)
|
89 |
+
x = self.stem_layer(x)
|
90 |
+
########## Encoder ##########
|
91 |
+
if self.config.bb in ['vgg16', 'vgg16bn', 'resnet50']:
|
92 |
+
x1 = self.bb.conv1(x)
|
93 |
+
x2 = self.bb.conv2(x1)
|
94 |
+
x3 = self.bb.conv3(x2)
|
95 |
+
x4 = self.bb.conv4(x3)
|
96 |
+
else:
|
97 |
+
x1, x2, x3, x4 = self.bb(x)
|
98 |
+
|
99 |
+
x4 = self.squeeze_module(x4)
|
100 |
+
|
101 |
+
########## Decoder ##########
|
102 |
+
|
103 |
+
features = [x, x1, x2, x3, x4]
|
104 |
+
scaled_preds = self.decoder(features)
|
105 |
+
|
106 |
+
return scaled_preds
|
107 |
+
|
108 |
+
|
109 |
+
class Decoder(nn.Module):
|
110 |
+
def __init__(self, channels):
|
111 |
+
super(Decoder, self).__init__()
|
112 |
+
self.config = Config()
|
113 |
+
DecoderBlock = eval('BasicDecBlk')
|
114 |
+
LateralBlock = eval('BasicLatBlk')
|
115 |
+
|
116 |
+
self.decoder_block4 = DecoderBlock(channels[0], channels[1])
|
117 |
+
self.decoder_block3 = DecoderBlock(channels[1], channels[2])
|
118 |
+
self.decoder_block2 = DecoderBlock(channels[2], channels[3])
|
119 |
+
self.decoder_block1 = DecoderBlock(channels[3], channels[3]//2)
|
120 |
+
|
121 |
+
self.lateral_block4 = LateralBlock(channels[1], channels[1])
|
122 |
+
self.lateral_block3 = LateralBlock(channels[2], channels[2])
|
123 |
+
self.lateral_block2 = LateralBlock(channels[3], channels[3])
|
124 |
+
|
125 |
+
if self.config.ms_supervision:
|
126 |
+
self.conv_ms_spvn_4 = nn.Conv2d(channels[1], 1, 1, 1, 0)
|
127 |
+
self.conv_ms_spvn_3 = nn.Conv2d(channels[2], 1, 1, 1, 0)
|
128 |
+
self.conv_ms_spvn_2 = nn.Conv2d(channels[3], 1, 1, 1, 0)
|
129 |
+
self.conv_out1 = nn.Sequential(nn.Conv2d(channels[3]//2, 1, 1, 1, 0))
|
130 |
+
|
131 |
+
def forward(self, features):
|
132 |
+
x, x1, x2, x3, x4 = features
|
133 |
+
outs = []
|
134 |
+
p4 = self.decoder_block4(x4)
|
135 |
+
_p4 = F.interpolate(p4, size=x3.shape[2:], mode='bilinear', align_corners=True)
|
136 |
+
_p3 = _p4 + self.lateral_block4(x3)
|
137 |
+
|
138 |
+
p3 = self.decoder_block3(_p3)
|
139 |
+
_p3 = F.interpolate(p3, size=x2.shape[2:], mode='bilinear', align_corners=True)
|
140 |
+
_p2 = _p3 + self.lateral_block3(x2)
|
141 |
+
|
142 |
+
p2 = self.decoder_block2(_p2)
|
143 |
+
_p2 = F.interpolate(p2, size=x1.shape[2:], mode='bilinear', align_corners=True)
|
144 |
+
_p1 = _p2 + self.lateral_block2(x1)
|
145 |
+
|
146 |
+
_p1 = self.decoder_block1(_p1)
|
147 |
+
_p1 = F.interpolate(_p1, size=x.shape[2:], mode='bilinear', align_corners=True)
|
148 |
+
p1_out = self.conv_out1(_p1)
|
149 |
+
|
150 |
+
if self.config.ms_supervision:
|
151 |
+
outs.append(self.conv_ms_spvn_4(p4))
|
152 |
+
outs.append(self.conv_ms_spvn_3(p3))
|
153 |
+
outs.append(self.conv_ms_spvn_2(p2))
|
154 |
+
outs.append(p1_out)
|
155 |
+
return outs
|
156 |
+
|
157 |
+
|
158 |
+
class RefUNet(nn.Module):
|
159 |
+
# Refinement
|
160 |
+
def __init__(self, in_channels=3+1):
|
161 |
+
super(RefUNet, self).__init__()
|
162 |
+
self.encoder_1 = nn.Sequential(
|
163 |
+
nn.Conv2d(in_channels, 64, 3, 1, 1),
|
164 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
165 |
+
nn.BatchNorm2d(64),
|
166 |
+
nn.ReLU(inplace=True)
|
167 |
+
)
|
168 |
+
|
169 |
+
self.encoder_2 = nn.Sequential(
|
170 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
171 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
172 |
+
nn.BatchNorm2d(64),
|
173 |
+
nn.ReLU(inplace=True)
|
174 |
+
)
|
175 |
+
|
176 |
+
self.encoder_3 = nn.Sequential(
|
177 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
178 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
179 |
+
nn.BatchNorm2d(64),
|
180 |
+
nn.ReLU(inplace=True)
|
181 |
+
)
|
182 |
+
|
183 |
+
self.encoder_4 = nn.Sequential(
|
184 |
+
nn.MaxPool2d(2, 2, ceil_mode=True),
|
185 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
186 |
+
nn.BatchNorm2d(64),
|
187 |
+
nn.ReLU(inplace=True)
|
188 |
+
)
|
189 |
+
|
190 |
+
self.pool4 = nn.MaxPool2d(2, 2, ceil_mode=True)
|
191 |
+
#####
|
192 |
+
self.decoder_5 = nn.Sequential(
|
193 |
+
nn.Conv2d(64, 64, 3, 1, 1),
|
194 |
+
nn.BatchNorm2d(64),
|
195 |
+
nn.ReLU(inplace=True)
|
196 |
+
)
|
197 |
+
#####
|
198 |
+
self.decoder_4 = nn.Sequential(
|
199 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
200 |
+
nn.BatchNorm2d(64),
|
201 |
+
nn.ReLU(inplace=True)
|
202 |
+
)
|
203 |
+
|
204 |
+
self.decoder_3 = nn.Sequential(
|
205 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
206 |
+
nn.BatchNorm2d(64),
|
207 |
+
nn.ReLU(inplace=True)
|
208 |
+
)
|
209 |
+
|
210 |
+
self.decoder_2 = nn.Sequential(
|
211 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
212 |
+
nn.BatchNorm2d(64),
|
213 |
+
nn.ReLU(inplace=True)
|
214 |
+
)
|
215 |
+
|
216 |
+
self.decoder_1 = nn.Sequential(
|
217 |
+
nn.Conv2d(128, 64, 3, 1, 1),
|
218 |
+
nn.BatchNorm2d(64),
|
219 |
+
nn.ReLU(inplace=True)
|
220 |
+
)
|
221 |
+
|
222 |
+
self.conv_d0 = nn.Conv2d(64, 1, 3, 1, 1)
|
223 |
+
|
224 |
+
self.upscore2 = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
|
225 |
+
|
226 |
+
def forward(self, x):
|
227 |
+
outs = []
|
228 |
+
if isinstance(x, list):
|
229 |
+
x = torch.cat(x, dim=1)
|
230 |
+
hx = x
|
231 |
+
|
232 |
+
hx1 = self.encoder_1(hx)
|
233 |
+
hx2 = self.encoder_2(hx1)
|
234 |
+
hx3 = self.encoder_3(hx2)
|
235 |
+
hx4 = self.encoder_4(hx3)
|
236 |
+
|
237 |
+
hx = self.decoder_5(self.pool4(hx4))
|
238 |
+
hx = torch.cat((self.upscore2(hx), hx4), 1)
|
239 |
+
|
240 |
+
d4 = self.decoder_4(hx)
|
241 |
+
hx = torch.cat((self.upscore2(d4), hx3), 1)
|
242 |
+
|
243 |
+
d3 = self.decoder_3(hx)
|
244 |
+
hx = torch.cat((self.upscore2(d3), hx2), 1)
|
245 |
+
|
246 |
+
d2 = self.decoder_2(hx)
|
247 |
+
hx = torch.cat((self.upscore2(d2), hx1), 1)
|
248 |
+
|
249 |
+
d1 = self.decoder_1(hx)
|
250 |
+
|
251 |
+
x = self.conv_d0(d1)
|
252 |
+
outs.append(x)
|
253 |
+
return outs
|
BiRefNet_github/models/refinement/stem_layer.py
ADDED
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch.nn as nn
|
2 |
+
from models.modules.utils import build_act_layer, build_norm_layer
|
3 |
+
|
4 |
+
|
5 |
+
class StemLayer(nn.Module):
|
6 |
+
r""" Stem layer of InternImage
|
7 |
+
Args:
|
8 |
+
in_channels (int): number of input channels
|
9 |
+
out_channels (int): number of output channels
|
10 |
+
act_layer (str): activation layer
|
11 |
+
norm_layer (str): normalization layer
|
12 |
+
"""
|
13 |
+
|
14 |
+
def __init__(self,
|
15 |
+
in_channels=3+1,
|
16 |
+
inter_channels=48,
|
17 |
+
out_channels=96,
|
18 |
+
act_layer='GELU',
|
19 |
+
norm_layer='BN'):
|
20 |
+
super().__init__()
|
21 |
+
self.conv1 = nn.Conv2d(in_channels,
|
22 |
+
inter_channels,
|
23 |
+
kernel_size=3,
|
24 |
+
stride=1,
|
25 |
+
padding=1)
|
26 |
+
self.norm1 = build_norm_layer(
|
27 |
+
inter_channels, norm_layer, 'channels_first', 'channels_first'
|
28 |
+
)
|
29 |
+
self.act = build_act_layer(act_layer)
|
30 |
+
self.conv2 = nn.Conv2d(inter_channels,
|
31 |
+
out_channels,
|
32 |
+
kernel_size=3,
|
33 |
+
stride=1,
|
34 |
+
padding=1)
|
35 |
+
self.norm2 = build_norm_layer(
|
36 |
+
out_channels, norm_layer, 'channels_first', 'channels_first'
|
37 |
+
)
|
38 |
+
|
39 |
+
def forward(self, x):
|
40 |
+
x = self.conv1(x)
|
41 |
+
x = self.norm1(x)
|
42 |
+
x = self.act(x)
|
43 |
+
x = self.conv2(x)
|
44 |
+
x = self.norm2(x)
|
45 |
+
return x
|
BiRefNet_github/preproc.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from PIL import Image, ImageEnhance
|
2 |
+
import random
|
3 |
+
import numpy as np
|
4 |
+
import random
|
5 |
+
|
6 |
+
|
7 |
+
def preproc(image, label, preproc_methods=['flip']):
|
8 |
+
if 'flip' in preproc_methods:
|
9 |
+
image, label = cv_random_flip(image, label)
|
10 |
+
if 'crop' in preproc_methods:
|
11 |
+
image, label = random_crop(image, label)
|
12 |
+
if 'rotate' in preproc_methods:
|
13 |
+
image, label = random_rotate(image, label)
|
14 |
+
if 'enhance' in preproc_methods:
|
15 |
+
image = color_enhance(image)
|
16 |
+
if 'pepper' in preproc_methods:
|
17 |
+
label = random_pepper(label)
|
18 |
+
return image, label
|
19 |
+
|
20 |
+
|
21 |
+
def cv_random_flip(img, label):
|
22 |
+
if random.random() > 0.5:
|
23 |
+
img = img.transpose(Image.FLIP_LEFT_RIGHT)
|
24 |
+
label = label.transpose(Image.FLIP_LEFT_RIGHT)
|
25 |
+
return img, label
|
26 |
+
|
27 |
+
|
28 |
+
def random_crop(image, label):
|
29 |
+
border = 30
|
30 |
+
image_width = image.size[0]
|
31 |
+
image_height = image.size[1]
|
32 |
+
border = int(min(image_width, image_height) * 0.1)
|
33 |
+
crop_win_width = np.random.randint(image_width - border, image_width)
|
34 |
+
crop_win_height = np.random.randint(image_height - border, image_height)
|
35 |
+
random_region = (
|
36 |
+
(image_width - crop_win_width) >> 1, (image_height - crop_win_height) >> 1, (image_width + crop_win_width) >> 1,
|
37 |
+
(image_height + crop_win_height) >> 1)
|
38 |
+
return image.crop(random_region), label.crop(random_region)
|
39 |
+
|
40 |
+
|
41 |
+
def random_rotate(image, label, angle=15):
|
42 |
+
mode = Image.BICUBIC
|
43 |
+
if random.random() > 0.8:
|
44 |
+
random_angle = np.random.randint(-angle, angle)
|
45 |
+
image = image.rotate(random_angle, mode)
|
46 |
+
label = label.rotate(random_angle, mode)
|
47 |
+
return image, label
|
48 |
+
|
49 |
+
|
50 |
+
def color_enhance(image):
|
51 |
+
bright_intensity = random.randint(5, 15) / 10.0
|
52 |
+
image = ImageEnhance.Brightness(image).enhance(bright_intensity)
|
53 |
+
contrast_intensity = random.randint(5, 15) / 10.0
|
54 |
+
image = ImageEnhance.Contrast(image).enhance(contrast_intensity)
|
55 |
+
color_intensity = random.randint(0, 20) / 10.0
|
56 |
+
image = ImageEnhance.Color(image).enhance(color_intensity)
|
57 |
+
sharp_intensity = random.randint(0, 30) / 10.0
|
58 |
+
image = ImageEnhance.Sharpness(image).enhance(sharp_intensity)
|
59 |
+
return image
|
60 |
+
|
61 |
+
|
62 |
+
def random_gaussian(image, mean=0.1, sigma=0.35):
|
63 |
+
def gaussianNoisy(im, mean=mean, sigma=sigma):
|
64 |
+
for _i in range(len(im)):
|
65 |
+
im[_i] += random.gauss(mean, sigma)
|
66 |
+
return im
|
67 |
+
|
68 |
+
img = np.asarray(image)
|
69 |
+
width, height = img.shape
|
70 |
+
img = gaussianNoisy(img[:].flatten(), mean, sigma)
|
71 |
+
img = img.reshape([width, height])
|
72 |
+
return Image.fromarray(np.uint8(img))
|
73 |
+
|
74 |
+
|
75 |
+
def random_pepper(img, N=0.0015):
|
76 |
+
img = np.array(img)
|
77 |
+
noiseNum = int(N * img.shape[0] * img.shape[1])
|
78 |
+
for i in range(noiseNum):
|
79 |
+
randX = random.randint(0, img.shape[0] - 1)
|
80 |
+
randY = random.randint(0, img.shape[1] - 1)
|
81 |
+
if random.randint(0, 1) == 0:
|
82 |
+
img[randX, randY] = 0
|
83 |
+
else:
|
84 |
+
img[randX, randY] = 255
|
85 |
+
return Image.fromarray(img)
|
BiRefNet_github/requirements.txt
ADDED
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
2 |
+
torch==2.0.1
|
3 |
+
--extra-index-url https://download.pytorch.org/whl/cu118
|
4 |
+
torchvision==0.15.2
|
5 |
+
numpy<2
|
6 |
+
opencv-python
|
7 |
+
timm
|
8 |
+
scipy
|
9 |
+
scikit-image
|
10 |
+
kornia
|
11 |
+
|
12 |
+
tqdm
|
13 |
+
prettytable
|
14 |
+
|
15 |
+
huggingface_hub
|
BiRefNet_github/rm_cache.sh
ADDED
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
rm -rf __pycache__ */__pycache__
|
3 |
+
|
4 |
+
# Val
|
5 |
+
rm -r tmp*
|
6 |
+
|
7 |
+
# Train
|
8 |
+
rm slurm*
|
9 |
+
rm -r ckpt
|
10 |
+
rm nohup.out*
|
11 |
+
|
12 |
+
# Eval
|
13 |
+
rm -r evaluation/eval-*
|
14 |
+
rm -r tmp*
|
15 |
+
rm -r e_logs/
|
16 |
+
|
17 |
+
# System
|
18 |
+
rm core-*-python-*
|
19 |
+
|
20 |
+
clear
|
BiRefNet_github/sub.sh
ADDED
@@ -0,0 +1,19 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
# Example: ./sub.sh tmp_proj 0,1,2,3 3 --> Use 0,1,2,3 for training, release GPUs, use GPU:3 for inference.
|
3 |
+
|
4 |
+
module load compilers/cuda/11.8
|
5 |
+
|
6 |
+
export PYTHONUNBUFFERED=1
|
7 |
+
export LD_PRELOAD=/home/bingxing2/apps/compilers/gcc/12.2.0/lib64/libstdc++.so.6
|
8 |
+
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:${HOME}/miniconda3/lib:/home/bingxing2/apps/cudnn/8.4.0.27_cuda11.x/lib
|
9 |
+
|
10 |
+
method=${1:-"BSL"}
|
11 |
+
devices=${2:-0}
|
12 |
+
|
13 |
+
sbatch --nodes=1 -p vip_gpu_ailab -A ai4bio \
|
14 |
+
--ntasks-per-node=1 \
|
15 |
+
--gres=gpu:$(($(echo ${devices%%,} | grep -o "," | wc -l)+1)) \
|
16 |
+
--cpus-per-task=32 \
|
17 |
+
./train_test.sh ${method} ${devices}
|
18 |
+
|
19 |
+
hostname
|
BiRefNet_github/test.sh
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
devices=${1:-0}
|
2 |
+
pred_root=${2:-e_preds}
|
3 |
+
|
4 |
+
# Inference
|
5 |
+
|
6 |
+
CUDA_VISIBLE_DEVICES=${devices} python inference.py --pred_root ${pred_root}
|
7 |
+
|
8 |
+
echo Inference finished at $(date)
|
9 |
+
|
10 |
+
# Evaluation
|
11 |
+
log_dir=e_logs && mkdir ${log_dir}
|
12 |
+
|
13 |
+
task=$(python3 config.py)
|
14 |
+
case "${task}" in
|
15 |
+
"DIS5K") testsets='DIS-VD,DIS-TE1,DIS-TE2,DIS-TE3,DIS-TE4' ;;
|
16 |
+
"COD") testsets='CHAMELEON,NC4K,TE-CAMO,TE-COD10K' ;;
|
17 |
+
"HRSOD") testsets='DAVIS-S,TE-HRSOD,TE-UHRSD,DUT-OMRON,TE-DUTS' ;;
|
18 |
+
"DIS5K+HRSOD+HRS10K") testsets='DIS-VD' ;;
|
19 |
+
"P3M-10k") testsets='TE-P3M-500-P,TE-P3M-500-NP' ;;
|
20 |
+
esac
|
21 |
+
testsets=(`echo ${testsets} | tr ',' ' '`) && testsets=${testsets[@]}
|
22 |
+
|
23 |
+
for testset in ${testsets}; do
|
24 |
+
nohup python eval_existingOnes.py --pred_root ${pred_root} --data_lst ${testset} > ${log_dir}/eval_${testset}.out 2>&1 &
|
25 |
+
done
|
26 |
+
|
27 |
+
|
28 |
+
echo Evaluation started at $(date)
|
BiRefNet_github/train.py
ADDED
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import datetime
|
3 |
+
import argparse
|
4 |
+
import torch
|
5 |
+
import torch.nn as nn
|
6 |
+
import torch.optim as optim
|
7 |
+
from torch.autograd import Variable
|
8 |
+
|
9 |
+
from config import Config
|
10 |
+
from loss import PixLoss, ClsLoss
|
11 |
+
from dataset import MyData
|
12 |
+
from models.birefnet import BiRefNet
|
13 |
+
from utils import Logger, AverageMeter, set_seed, check_state_dict
|
14 |
+
from evaluation.valid import valid
|
15 |
+
|
16 |
+
from torch.utils.data.distributed import DistributedSampler
|
17 |
+
from torch.nn.parallel import DistributedDataParallel as DDP
|
18 |
+
from torch.distributed import init_process_group, destroy_process_group, get_rank
|
19 |
+
from torch.cuda import amp
|
20 |
+
|
21 |
+
|
22 |
+
parser = argparse.ArgumentParser(description='')
|
23 |
+
parser.add_argument('--resume', default=None, type=str, help='path to latest checkpoint')
|
24 |
+
parser.add_argument('--epochs', default=120, type=int)
|
25 |
+
parser.add_argument('--trainset', default='DIS5K', type=str, help="Options: 'DIS5K'")
|
26 |
+
parser.add_argument('--ckpt_dir', default=None, help='Temporary folder')
|
27 |
+
parser.add_argument('--testsets', default='DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4', type=str)
|
28 |
+
parser.add_argument('--dist', default=False, type=lambda x: x == 'True')
|
29 |
+
args = parser.parse_args()
|
30 |
+
|
31 |
+
|
32 |
+
config = Config()
|
33 |
+
if config.rand_seed:
|
34 |
+
set_seed(config.rand_seed)
|
35 |
+
|
36 |
+
if config.use_fp16:
|
37 |
+
# Half Precision
|
38 |
+
scaler = amp.GradScaler(enabled=config.use_fp16)
|
39 |
+
|
40 |
+
# DDP
|
41 |
+
to_be_distributed = args.dist
|
42 |
+
if to_be_distributed:
|
43 |
+
init_process_group(backend="nccl", timeout=datetime.timedelta(seconds=3600*10))
|
44 |
+
device = int(os.environ["LOCAL_RANK"])
|
45 |
+
else:
|
46 |
+
device = config.device
|
47 |
+
|
48 |
+
epoch_st = 1
|
49 |
+
# make dir for ckpt
|
50 |
+
os.makedirs(args.ckpt_dir, exist_ok=True)
|
51 |
+
|
52 |
+
# Init log file
|
53 |
+
logger = Logger(os.path.join(args.ckpt_dir, "log.txt"))
|
54 |
+
logger_loss_idx = 1
|
55 |
+
|
56 |
+
# log model and optimizer params
|
57 |
+
# logger.info("Model details:"); logger.info(model)
|
58 |
+
logger.info("datasets: load_all={}, compile={}.".format(config.load_all, config.compile))
|
59 |
+
logger.info("Other hyperparameters:"); logger.info(args)
|
60 |
+
print('batch size:', config.batch_size)
|
61 |
+
|
62 |
+
|
63 |
+
if os.path.exists(os.path.join(config.data_root_dir, config.task, args.testsets.strip('+').split('+')[0])):
|
64 |
+
args.testsets = args.testsets.strip('+').split('+')
|
65 |
+
else:
|
66 |
+
args.testsets = []
|
67 |
+
|
68 |
+
# Init model
|
69 |
+
def prepare_dataloader(dataset: torch.utils.data.Dataset, batch_size: int, to_be_distributed=False, is_train=True):
|
70 |
+
if to_be_distributed:
|
71 |
+
return torch.utils.data.DataLoader(
|
72 |
+
dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size), pin_memory=True,
|
73 |
+
shuffle=False, sampler=DistributedSampler(dataset), drop_last=True
|
74 |
+
)
|
75 |
+
else:
|
76 |
+
return torch.utils.data.DataLoader(
|
77 |
+
dataset=dataset, batch_size=batch_size, num_workers=min(config.num_workers, batch_size, 0), pin_memory=True,
|
78 |
+
shuffle=is_train, drop_last=True
|
79 |
+
)
|
80 |
+
|
81 |
+
|
82 |
+
def init_data_loaders(to_be_distributed):
|
83 |
+
# Prepare dataset
|
84 |
+
train_loader = prepare_dataloader(
|
85 |
+
MyData(datasets=config.training_set, image_size=config.size, is_train=True),
|
86 |
+
config.batch_size, to_be_distributed=to_be_distributed, is_train=True
|
87 |
+
)
|
88 |
+
print(len(train_loader), "batches of train dataloader {} have been created.".format(config.training_set))
|
89 |
+
test_loaders = {}
|
90 |
+
for testset in args.testsets:
|
91 |
+
_data_loader_test = prepare_dataloader(
|
92 |
+
MyData(datasets=testset, image_size=config.size, is_train=False),
|
93 |
+
config.batch_size_valid, is_train=False
|
94 |
+
)
|
95 |
+
print(len(_data_loader_test), "batches of valid dataloader {} have been created.".format(testset))
|
96 |
+
test_loaders[testset] = _data_loader_test
|
97 |
+
return train_loader, test_loaders
|
98 |
+
|
99 |
+
|
100 |
+
def init_models_optimizers(epochs, to_be_distributed):
|
101 |
+
model = BiRefNet(bb_pretrained=True)
|
102 |
+
if args.resume:
|
103 |
+
if os.path.isfile(args.resume):
|
104 |
+
logger.info("=> loading checkpoint '{}'".format(args.resume))
|
105 |
+
state_dict = torch.load(args.resume, map_location='cpu')
|
106 |
+
state_dict = check_state_dict(state_dict)
|
107 |
+
model.load_state_dict(state_dict)
|
108 |
+
global epoch_st
|
109 |
+
epoch_st = int(args.resume.rstrip('.pth').split('epoch_')[-1]) + 1
|
110 |
+
else:
|
111 |
+
logger.info("=> no checkpoint found at '{}'".format(args.resume))
|
112 |
+
if to_be_distributed:
|
113 |
+
model = model.to(device)
|
114 |
+
model = DDP(model, device_ids=[device])
|
115 |
+
else:
|
116 |
+
model = model.to(device)
|
117 |
+
if config.compile:
|
118 |
+
model = torch.compile(model, mode=['default', 'reduce-overhead', 'max-autotune'][0])
|
119 |
+
if config.precisionHigh:
|
120 |
+
torch.set_float32_matmul_precision('high')
|
121 |
+
|
122 |
+
|
123 |
+
# Setting optimizer
|
124 |
+
if config.optimizer == 'AdamW':
|
125 |
+
optimizer = optim.AdamW(params=model.parameters(), lr=config.lr, weight_decay=1e-2)
|
126 |
+
elif config.optimizer == 'Adam':
|
127 |
+
optimizer = optim.Adam(params=model.parameters(), lr=config.lr, weight_decay=0)
|
128 |
+
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
|
129 |
+
optimizer,
|
130 |
+
milestones=[lde if lde > 0 else epochs + lde + 1 for lde in config.lr_decay_epochs],
|
131 |
+
gamma=config.lr_decay_rate
|
132 |
+
)
|
133 |
+
logger.info("Optimizer details:"); logger.info(optimizer)
|
134 |
+
logger.info("Scheduler details:"); logger.info(lr_scheduler)
|
135 |
+
|
136 |
+
return model, optimizer, lr_scheduler
|
137 |
+
|
138 |
+
|
139 |
+
class Trainer:
|
140 |
+
def __init__(
|
141 |
+
self, data_loaders, model_opt_lrsch,
|
142 |
+
):
|
143 |
+
self.model, self.optimizer, self.lr_scheduler = model_opt_lrsch
|
144 |
+
self.train_loader, self.test_loaders = data_loaders
|
145 |
+
if config.out_ref:
|
146 |
+
self.criterion_gdt = nn.BCELoss() if not config.use_fp16 else nn.BCEWithLogitsLoss()
|
147 |
+
|
148 |
+
# Setting Losses
|
149 |
+
self.pix_loss = PixLoss()
|
150 |
+
self.cls_loss = ClsLoss()
|
151 |
+
|
152 |
+
# Others
|
153 |
+
self.loss_log = AverageMeter()
|
154 |
+
if config.lambda_adv_g:
|
155 |
+
self.optimizer_d, self.lr_scheduler_d, self.disc, self.adv_criterion = self._load_adv_components()
|
156 |
+
self.disc_update_for_odd = 0
|
157 |
+
|
158 |
+
def _load_adv_components(self):
|
159 |
+
# AIL
|
160 |
+
from loss import Discriminator
|
161 |
+
disc = Discriminator(channels=3, img_size=config.size)
|
162 |
+
if to_be_distributed:
|
163 |
+
disc = disc.to(device)
|
164 |
+
disc = DDP(disc, device_ids=[device], broadcast_buffers=False)
|
165 |
+
else:
|
166 |
+
disc = disc.to(device)
|
167 |
+
if config.compile:
|
168 |
+
disc = torch.compile(disc, mode=['default', 'reduce-overhead', 'max-autotune'][0])
|
169 |
+
adv_criterion = nn.BCELoss() if not config.use_fp16 else nn.BCEWithLogitsLoss()
|
170 |
+
if config.optimizer == 'AdamW':
|
171 |
+
optimizer_d = optim.AdamW(params=disc.parameters(), lr=config.lr, weight_decay=1e-2)
|
172 |
+
elif config.optimizer == 'Adam':
|
173 |
+
optimizer_d = optim.Adam(params=disc.parameters(), lr=config.lr, weight_decay=0)
|
174 |
+
lr_scheduler_d = torch.optim.lr_scheduler.MultiStepLR(
|
175 |
+
optimizer_d,
|
176 |
+
milestones=[lde if lde > 0 else args.epochs + lde + 1 for lde in config.lr_decay_epochs],
|
177 |
+
gamma=config.lr_decay_rate
|
178 |
+
)
|
179 |
+
return optimizer_d, lr_scheduler_d, disc, adv_criterion
|
180 |
+
|
181 |
+
def _train_batch(self, batch):
|
182 |
+
inputs = batch[0].to(device)
|
183 |
+
gts = batch[1].to(device)
|
184 |
+
class_labels = batch[2].to(device)
|
185 |
+
if config.use_fp16:
|
186 |
+
with amp.autocast(enabled=config.use_fp16):
|
187 |
+
scaled_preds, class_preds_lst = self.model(inputs)
|
188 |
+
if config.out_ref:
|
189 |
+
(outs_gdt_pred, outs_gdt_label), scaled_preds = scaled_preds
|
190 |
+
for _idx, (_gdt_pred, _gdt_label) in enumerate(zip(outs_gdt_pred, outs_gdt_label)):
|
191 |
+
_gdt_pred = nn.functional.interpolate(_gdt_pred, size=_gdt_label.shape[2:], mode='bilinear', align_corners=True)#.sigmoid()
|
192 |
+
# _gdt_label = _gdt_label.sigmoid()
|
193 |
+
loss_gdt = self.criterion_gdt(_gdt_pred, _gdt_label) if _idx == 0 else self.criterion_gdt(_gdt_pred, _gdt_label) + loss_gdt
|
194 |
+
# self.loss_dict['loss_gdt'] = loss_gdt.item()
|
195 |
+
if None in class_preds_lst:
|
196 |
+
loss_cls = 0.
|
197 |
+
else:
|
198 |
+
loss_cls = self.cls_loss(class_preds_lst, class_labels) * 1.0
|
199 |
+
self.loss_dict['loss_cls'] = loss_cls.item()
|
200 |
+
|
201 |
+
# Loss
|
202 |
+
loss_pix = self.pix_loss(scaled_preds, torch.clamp(gts, 0, 1)) * 1.0
|
203 |
+
self.loss_dict['loss_pix'] = loss_pix.item()
|
204 |
+
# since there may be several losses for sal, the lambdas for them (lambdas_pix) are inside the loss.py
|
205 |
+
loss = loss_pix + loss_cls
|
206 |
+
if config.out_ref:
|
207 |
+
loss = loss + loss_gdt * 1.0
|
208 |
+
|
209 |
+
if config.lambda_adv_g:
|
210 |
+
# gen
|
211 |
+
valid = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(1.0), requires_grad=False).to(device)
|
212 |
+
adv_loss_g = self.adv_criterion(self.disc(scaled_preds[-1] * inputs), valid) * config.lambda_adv_g
|
213 |
+
loss += adv_loss_g
|
214 |
+
self.loss_dict['loss_adv'] = adv_loss_g.item()
|
215 |
+
self.disc_update_for_odd += 1
|
216 |
+
# self.loss_log.update(loss.item(), inputs.size(0))
|
217 |
+
# self.optimizer.zero_grad()
|
218 |
+
# loss.backward()
|
219 |
+
# self.optimizer.step()
|
220 |
+
self.optimizer.zero_grad()
|
221 |
+
scaler.scale(loss).backward()
|
222 |
+
scaler.step(self.optimizer)
|
223 |
+
scaler.update()
|
224 |
+
|
225 |
+
if config.lambda_adv_g and self.disc_update_for_odd % 2 == 0:
|
226 |
+
# disc
|
227 |
+
fake = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(0.0), requires_grad=False).to(device)
|
228 |
+
adv_loss_real = self.adv_criterion(self.disc(gts * inputs), valid)
|
229 |
+
adv_loss_fake = self.adv_criterion(self.disc(scaled_preds[-1].detach() * inputs.detach()), fake)
|
230 |
+
adv_loss_d = (adv_loss_real + adv_loss_fake) / 2 * config.lambda_adv_d
|
231 |
+
self.loss_dict['loss_adv_d'] = adv_loss_d.item()
|
232 |
+
# self.optimizer_d.zero_grad()
|
233 |
+
# adv_loss_d.backward()
|
234 |
+
# self.optimizer_d.step()
|
235 |
+
self.optimizer_d.zero_grad()
|
236 |
+
scaler.scale(adv_loss_d).backward()
|
237 |
+
scaler.step(self.optimizer_d)
|
238 |
+
scaler.update()
|
239 |
+
else:
|
240 |
+
scaled_preds, class_preds_lst = self.model(inputs)
|
241 |
+
if config.out_ref:
|
242 |
+
(outs_gdt_pred, outs_gdt_label), scaled_preds = scaled_preds
|
243 |
+
for _idx, (_gdt_pred, _gdt_label) in enumerate(zip(outs_gdt_pred, outs_gdt_label)):
|
244 |
+
_gdt_pred = nn.functional.interpolate(_gdt_pred, size=_gdt_label.shape[2:], mode='bilinear', align_corners=True).sigmoid()
|
245 |
+
_gdt_label = _gdt_label.sigmoid()
|
246 |
+
loss_gdt = self.criterion_gdt(_gdt_pred, _gdt_label) if _idx == 0 else self.criterion_gdt(_gdt_pred, _gdt_label) + loss_gdt
|
247 |
+
# self.loss_dict['loss_gdt'] = loss_gdt.item()
|
248 |
+
if None in class_preds_lst:
|
249 |
+
loss_cls = 0.
|
250 |
+
else:
|
251 |
+
loss_cls = self.cls_loss(class_preds_lst, class_labels) * 1.0
|
252 |
+
self.loss_dict['loss_cls'] = loss_cls.item()
|
253 |
+
|
254 |
+
# Loss
|
255 |
+
loss_pix = self.pix_loss(scaled_preds, torch.clamp(gts, 0, 1)) * 1.0
|
256 |
+
self.loss_dict['loss_pix'] = loss_pix.item()
|
257 |
+
# since there may be several losses for sal, the lambdas for them (lambdas_pix) are inside the loss.py
|
258 |
+
loss = loss_pix + loss_cls
|
259 |
+
if config.out_ref:
|
260 |
+
loss = loss + loss_gdt * 1.0
|
261 |
+
|
262 |
+
if config.lambda_adv_g:
|
263 |
+
# gen
|
264 |
+
valid = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(1.0), requires_grad=False).to(device)
|
265 |
+
adv_loss_g = self.adv_criterion(self.disc(scaled_preds[-1] * inputs), valid) * config.lambda_adv_g
|
266 |
+
loss += adv_loss_g
|
267 |
+
self.loss_dict['loss_adv'] = adv_loss_g.item()
|
268 |
+
self.disc_update_for_odd += 1
|
269 |
+
self.loss_log.update(loss.item(), inputs.size(0))
|
270 |
+
self.optimizer.zero_grad()
|
271 |
+
loss.backward()
|
272 |
+
self.optimizer.step()
|
273 |
+
|
274 |
+
if config.lambda_adv_g and self.disc_update_for_odd % 2 == 0:
|
275 |
+
# disc
|
276 |
+
fake = Variable(torch.cuda.FloatTensor(scaled_preds[-1].shape[0], 1).fill_(0.0), requires_grad=False).to(device)
|
277 |
+
adv_loss_real = self.adv_criterion(self.disc(gts * inputs), valid)
|
278 |
+
adv_loss_fake = self.adv_criterion(self.disc(scaled_preds[-1].detach() * inputs.detach()), fake)
|
279 |
+
adv_loss_d = (adv_loss_real + adv_loss_fake) / 2 * config.lambda_adv_d
|
280 |
+
self.loss_dict['loss_adv_d'] = adv_loss_d.item()
|
281 |
+
self.optimizer_d.zero_grad()
|
282 |
+
adv_loss_d.backward()
|
283 |
+
self.optimizer_d.step()
|
284 |
+
|
285 |
+
def train_epoch(self, epoch):
|
286 |
+
global logger_loss_idx
|
287 |
+
self.model.train()
|
288 |
+
self.loss_dict = {}
|
289 |
+
if epoch > args.epochs + config.IoU_finetune_last_epochs:
|
290 |
+
self.pix_loss.lambdas_pix_last['bce'] *= 0
|
291 |
+
self.pix_loss.lambdas_pix_last['ssim'] *= 1
|
292 |
+
self.pix_loss.lambdas_pix_last['iou'] *= 0.5
|
293 |
+
|
294 |
+
for batch_idx, batch in enumerate(self.train_loader):
|
295 |
+
self._train_batch(batch)
|
296 |
+
# Logger
|
297 |
+
if batch_idx % 20 == 0:
|
298 |
+
info_progress = 'Epoch[{0}/{1}] Iter[{2}/{3}].'.format(epoch, args.epochs, batch_idx, len(self.train_loader))
|
299 |
+
info_loss = 'Training Losses'
|
300 |
+
for loss_name, loss_value in self.loss_dict.items():
|
301 |
+
info_loss += ', {}: {:.3f}'.format(loss_name, loss_value)
|
302 |
+
logger.info(' '.join((info_progress, info_loss)))
|
303 |
+
info_loss = '@==Final== Epoch[{0}/{1}] Training Loss: {loss.avg:.3f} '.format(epoch, args.epochs, loss=self.loss_log)
|
304 |
+
logger.info(info_loss)
|
305 |
+
|
306 |
+
self.lr_scheduler.step()
|
307 |
+
if config.lambda_adv_g:
|
308 |
+
self.lr_scheduler_d.step()
|
309 |
+
return self.loss_log.avg
|
310 |
+
|
311 |
+
def validate_model(self, epoch):
|
312 |
+
num_image_testset_all = {'DIS-VD': 470, 'DIS-TE1': 500, 'DIS-TE2': 500, 'DIS-TE3': 500, 'DIS-TE4': 500}
|
313 |
+
num_image_testset = {}
|
314 |
+
for testset in args.testsets:
|
315 |
+
if 'DIS-TE' in testset:
|
316 |
+
num_image_testset[testset] = num_image_testset_all[testset]
|
317 |
+
weighted_scores = {'f_max': 0, 'f_mean': 0, 'f_wfm': 0, 'sm': 0, 'e_max': 0, 'e_mean': 0, 'mae': 0}
|
318 |
+
len_all_data_loaders = 0
|
319 |
+
self.model.epoch = epoch
|
320 |
+
for testset, data_loader_test in self.test_loaders.items():
|
321 |
+
print('Validating {}...'.format(testset))
|
322 |
+
performance_dict = valid(
|
323 |
+
self.model,
|
324 |
+
data_loader_test,
|
325 |
+
pred_dir='.',
|
326 |
+
method=args.ckpt_dir.split('/')[-1] if args.ckpt_dir.split('/')[-1].strip('.').strip('/') else 'tmp_val',
|
327 |
+
testset=testset,
|
328 |
+
only_S_MAE=config.only_S_MAE,
|
329 |
+
device=device
|
330 |
+
)
|
331 |
+
print('Test set: {}:'.format(testset))
|
332 |
+
if config.only_S_MAE:
|
333 |
+
print('Smeasure: {:.4f}, MAE: {:.4f}'.format(
|
334 |
+
performance_dict['sm'], performance_dict['mae']
|
335 |
+
))
|
336 |
+
else:
|
337 |
+
print('Fmax: {:.4f}, Fwfm: {:.4f}, Smeasure: {:.4f}, Emean: {:.4f}, MAE: {:.4f}'.format(
|
338 |
+
performance_dict['f_max'], performance_dict['f_wfm'], performance_dict['sm'], performance_dict['e_mean'], performance_dict['mae']
|
339 |
+
))
|
340 |
+
if '-TE' in testset:
|
341 |
+
for metric in ['sm', 'mae'] if config.only_S_MAE else ['f_max', 'f_mean', 'f_wfm', 'sm', 'e_max', 'e_mean', 'mae']:
|
342 |
+
weighted_scores[metric] += performance_dict[metric] * len(data_loader_test)
|
343 |
+
len_all_data_loaders += len(data_loader_test)
|
344 |
+
print('Weighted Scores:')
|
345 |
+
for metric, score in weighted_scores.items():
|
346 |
+
if score:
|
347 |
+
print('\t{}: {:.4f}.'.format(metric, score / len_all_data_loaders))
|
348 |
+
|
349 |
+
|
350 |
+
def main():
|
351 |
+
|
352 |
+
trainer = Trainer(
|
353 |
+
data_loaders=init_data_loaders(to_be_distributed),
|
354 |
+
model_opt_lrsch=init_models_optimizers(args.epochs, to_be_distributed)
|
355 |
+
)
|
356 |
+
|
357 |
+
for epoch in range(epoch_st, args.epochs+1):
|
358 |
+
train_loss = trainer.train_epoch(epoch)
|
359 |
+
# Save checkpoint
|
360 |
+
# DDP
|
361 |
+
if epoch >= args.epochs - config.save_last and epoch % config.save_step == 0:
|
362 |
+
torch.save(
|
363 |
+
trainer.model.module.state_dict() if to_be_distributed else trainer.model.state_dict(),
|
364 |
+
os.path.join(args.ckpt_dir, 'epoch_{}.pth'.format(epoch))
|
365 |
+
)
|
366 |
+
if config.val_step and epoch >= args.epochs - config.save_last and (args.epochs - epoch) % config.val_step == 0:
|
367 |
+
if to_be_distributed:
|
368 |
+
if get_rank() == 0:
|
369 |
+
print('Validating at rank-{}...'.format(get_rank()))
|
370 |
+
trainer.validate_model(epoch)
|
371 |
+
else:
|
372 |
+
trainer.validate_model(epoch)
|
373 |
+
if to_be_distributed:
|
374 |
+
destroy_process_group()
|
375 |
+
|
376 |
+
if __name__ == '__main__':
|
377 |
+
main()
|
BiRefNet_github/train.sh
ADDED
@@ -0,0 +1,41 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
# Run script
|
3 |
+
# Settings of training & test for different tasks.
|
4 |
+
method="$1"
|
5 |
+
task=$(python3 config.py)
|
6 |
+
case "${task}" in
|
7 |
+
"DIS5K") epochs=600 && val_last=100 && step=5 ;;
|
8 |
+
"COD") epochs=150 && val_last=50 && step=5 ;;
|
9 |
+
"HRSOD") epochs=150 && val_last=50 && step=5 ;;
|
10 |
+
"DIS5K+HRSOD+HRS10K") epochs=250 && val_last=50 && step=5 ;;
|
11 |
+
"P3M-10k") epochs=150 && val_last=50 && step=5 ;;
|
12 |
+
esac
|
13 |
+
testsets=NO # Non-existing folder to skip.
|
14 |
+
# testsets=TE-COD10K # for COD
|
15 |
+
|
16 |
+
# Train
|
17 |
+
devices=$2
|
18 |
+
nproc_per_node=$(echo ${devices%%,} | grep -o "," | wc -l)
|
19 |
+
|
20 |
+
to_be_distributed=`echo ${nproc_per_node} | awk '{if($e > 0) print "True"; else print "False";}'`
|
21 |
+
|
22 |
+
echo Training started at $(date)
|
23 |
+
if [ ${to_be_distributed} == "True" ]
|
24 |
+
then
|
25 |
+
# Adapt the nproc_per_node by the number of GPUs. Give 8989 as the default value of master_port.
|
26 |
+
echo "Multi-GPU mode received..."
|
27 |
+
CUDA_VISIBLE_DEVICES=${devices} \
|
28 |
+
torchrun --nproc_per_node $((nproc_per_node+1)) --master_port=${3:-8989} \
|
29 |
+
train.py --ckpt_dir ckpt/${method} --epochs ${epochs} \
|
30 |
+
--testsets ${testsets} \
|
31 |
+
--dist ${to_be_distributed}
|
32 |
+
else
|
33 |
+
echo "Single-GPU mode received..."
|
34 |
+
CUDA_VISIBLE_DEVICES=${devices} \
|
35 |
+
python train.py --ckpt_dir ckpt/${method} --epochs ${epochs} \
|
36 |
+
--testsets ${testsets} \
|
37 |
+
--dist ${to_be_distributed} \
|
38 |
+
--resume ckpt/xx/ep100.pth
|
39 |
+
fi
|
40 |
+
|
41 |
+
echo Training finished at $(date)
|
BiRefNet_github/train_test.sh
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/sh
|
2 |
+
|
3 |
+
method=${1:-"BSL"}
|
4 |
+
devices=${2:-"0,1,2,3,4,5,6,7"}
|
5 |
+
|
6 |
+
bash train.sh ${method} ${devices}
|
7 |
+
|
8 |
+
devices_test=${3:-0}
|
9 |
+
bash test.sh ${devices_test}
|
10 |
+
|
11 |
+
hostname
|
BiRefNet_github/utils.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import logging
|
2 |
+
import os
|
3 |
+
import torch
|
4 |
+
from torchvision import transforms
|
5 |
+
import numpy as np
|
6 |
+
import random
|
7 |
+
import cv2
|
8 |
+
from PIL import Image
|
9 |
+
|
10 |
+
|
11 |
+
def path_to_image(path, size=(1024, 1024), color_type=['rgb', 'gray'][0]):
|
12 |
+
if color_type.lower() == 'rgb':
|
13 |
+
image = cv2.imread(path)
|
14 |
+
elif color_type.lower() == 'gray':
|
15 |
+
image = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
|
16 |
+
else:
|
17 |
+
print('Select the color_type to return, either to RGB or gray image.')
|
18 |
+
return
|
19 |
+
if size:
|
20 |
+
image = cv2.resize(image, size, interpolation=cv2.INTER_LINEAR)
|
21 |
+
if color_type.lower() == 'rgb':
|
22 |
+
image = Image.fromarray(cv2.cvtColor(image, cv2.COLOR_BGR2RGB)).convert('RGB')
|
23 |
+
else:
|
24 |
+
image = Image.fromarray(image).convert('L')
|
25 |
+
return image
|
26 |
+
|
27 |
+
|
28 |
+
|
29 |
+
def check_state_dict(state_dict, unwanted_prefix='_orig_mod.'):
|
30 |
+
for k, v in list(state_dict.items()):
|
31 |
+
if k.startswith(unwanted_prefix):
|
32 |
+
state_dict[k[len(unwanted_prefix):]] = state_dict.pop(k)
|
33 |
+
return state_dict
|
34 |
+
|
35 |
+
|
36 |
+
def generate_smoothed_gt(gts):
|
37 |
+
epsilon = 0.001
|
38 |
+
new_gts = (1-epsilon)*gts+epsilon/2
|
39 |
+
return new_gts
|
40 |
+
|
41 |
+
|
42 |
+
class Logger():
|
43 |
+
def __init__(self, path="log.txt"):
|
44 |
+
self.logger = logging.getLogger('BiRefNet')
|
45 |
+
self.file_handler = logging.FileHandler(path, "w")
|
46 |
+
self.stdout_handler = logging.StreamHandler()
|
47 |
+
self.stdout_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s'))
|
48 |
+
self.file_handler.setFormatter(logging.Formatter('%(asctime)s %(levelname)s %(message)s'))
|
49 |
+
self.logger.addHandler(self.file_handler)
|
50 |
+
self.logger.addHandler(self.stdout_handler)
|
51 |
+
self.logger.setLevel(logging.INFO)
|
52 |
+
self.logger.propagate = False
|
53 |
+
|
54 |
+
def info(self, txt):
|
55 |
+
self.logger.info(txt)
|
56 |
+
|
57 |
+
def close(self):
|
58 |
+
self.file_handler.close()
|
59 |
+
self.stdout_handler.close()
|
60 |
+
|
61 |
+
|
62 |
+
class AverageMeter(object):
|
63 |
+
"""Computes and stores the average and current value"""
|
64 |
+
def __init__(self):
|
65 |
+
self.reset()
|
66 |
+
|
67 |
+
def reset(self):
|
68 |
+
self.val = 0.0
|
69 |
+
self.avg = 0.0
|
70 |
+
self.sum = 0.0
|
71 |
+
self.count = 0.0
|
72 |
+
|
73 |
+
def update(self, val, n=1):
|
74 |
+
self.val = val
|
75 |
+
self.sum += val * n
|
76 |
+
self.count += n
|
77 |
+
self.avg = self.sum / self.count
|
78 |
+
|
79 |
+
|
80 |
+
def save_checkpoint(state, path, filename="latest.pth"):
|
81 |
+
torch.save(state, os.path.join(path, filename))
|
82 |
+
|
83 |
+
|
84 |
+
def save_tensor_img(tenor_im, path):
|
85 |
+
im = tenor_im.cpu().clone()
|
86 |
+
im = im.squeeze(0)
|
87 |
+
tensor2pil = transforms.ToPILImage()
|
88 |
+
im = tensor2pil(im)
|
89 |
+
im.save(path)
|
90 |
+
|
91 |
+
|
92 |
+
def set_seed(seed):
|
93 |
+
torch.manual_seed(seed)
|
94 |
+
torch.cuda.manual_seed_all(seed)
|
95 |
+
np.random.seed(seed)
|
96 |
+
random.seed(seed)
|
97 |
+
torch.backends.cudnn.deterministic = True
|
BiRefNet_github/waiting4eval.py
ADDED
@@ -0,0 +1,141 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# --------------------------------------------------------
|
2 |
+
# Make evaluation along with training. Swith time with space/computation.
|
3 |
+
# Licensed under The MIT License [see LICENSE for details]
|
4 |
+
# Written by Peng Zheng
|
5 |
+
# --------------------------------------------------------
|
6 |
+
import os
|
7 |
+
from glob import glob
|
8 |
+
from time import sleep
|
9 |
+
import argparse
|
10 |
+
import torch
|
11 |
+
|
12 |
+
from config import Config
|
13 |
+
from models.birefnet import BiRefNet
|
14 |
+
from dataset import MyData
|
15 |
+
from evaluation.valid import valid
|
16 |
+
|
17 |
+
|
18 |
+
parser = argparse.ArgumentParser(description='')
|
19 |
+
parser.add_argument('--cuda_idx', default=-1, type=int)
|
20 |
+
parser.add_argument('--val_step', default=5*1, type=int)
|
21 |
+
parser.add_argument('--program_id', default=0, type=int)
|
22 |
+
# id-th one of this program will evaluate val_step * N + program_id -th epoch model.
|
23 |
+
# Test more models, number of programs == number of GPUs: [models[num_all - program_id_1], models[num_all - program_id_max(n, val_step-1)], ...] programs with id>val_step will speed up the evaluation on (val_step - id)%val_step -th epoch models.
|
24 |
+
# Test fastest, only sequentially searched val_step*N -th models -- set all program_id as the same.
|
25 |
+
parser.add_argument('--testsets', default='DIS-VD+DIS-TE1+DIS-TE2+DIS-TE3+DIS-TE4', type=str)
|
26 |
+
args_eval = parser.parse_args()
|
27 |
+
|
28 |
+
args_eval.program_id = (args_eval.val_step - args_eval.program_id) % args_eval.val_step
|
29 |
+
|
30 |
+
config = Config()
|
31 |
+
config.only_S_MAE = True
|
32 |
+
device = 'cpu' if args_eval.cuda_idx < 0 else 'cuda:{}'.format(args_eval.cuda_idx)
|
33 |
+
ckpt_dir, testsets = glob(os.path.join('ckpt', '*'))[0], args_eval.testsets
|
34 |
+
|
35 |
+
|
36 |
+
def validate_model(model, test_loaders, epoch):
|
37 |
+
num_image_testset_all = {'DIS-VD': 470, 'DIS-TE1': 500, 'DIS-TE2': 500, 'DIS-TE3': 500, 'DIS-TE4': 500}
|
38 |
+
num_image_testset = {}
|
39 |
+
for testset in testsets.split('+'):
|
40 |
+
if 'DIS-TE' in testset:
|
41 |
+
num_image_testset[testset] = num_image_testset_all[testset]
|
42 |
+
weighted_scores = {'f_max': 0, 'sm': 0, 'e_max': 0, 'mae': 0}
|
43 |
+
len_all_data_loaders = 0
|
44 |
+
model.epoch = epoch
|
45 |
+
for testset, data_loader_test in test_loaders.items():
|
46 |
+
print('Validating {}...'.format(testset))
|
47 |
+
performance_dict = valid(
|
48 |
+
model,
|
49 |
+
data_loader_test,
|
50 |
+
pred_dir='.',
|
51 |
+
method=ckpt_dir.split('/')[-1] if ckpt_dir.split('/')[-1].strip('.').strip('/') else 'tmp_val',
|
52 |
+
testset=testset,
|
53 |
+
only_S_MAE=config.only_S_MAE,
|
54 |
+
device=device
|
55 |
+
)
|
56 |
+
print('Test set: {}:'.format(testset))
|
57 |
+
if config.only_S_MAE:
|
58 |
+
print('Smeasure: {:.4f}, MAE: {:.4f}'.format(
|
59 |
+
performance_dict['sm'], performance_dict['mae']
|
60 |
+
))
|
61 |
+
else:
|
62 |
+
print('Fmax: {:.4f}, Fwfm: {:.4f}, Smeasure: {:.4f}, Emean: {:.4f}, MAE: {:.4f}'.format(
|
63 |
+
performance_dict['f_max'], performance_dict['f_wfm'], performance_dict['sm'], performance_dict['e_mean'], performance_dict['mae']
|
64 |
+
))
|
65 |
+
if '-TE' in testset:
|
66 |
+
for metric in ['sm', 'mae'] if config.only_S_MAE else ['f_max', 'f_wfm', 'sm', 'e_mean', 'mae']:
|
67 |
+
weighted_scores[metric] += performance_dict[metric] * len(data_loader_test)
|
68 |
+
len_all_data_loaders += len(data_loader_test)
|
69 |
+
print('Weighted Scores:')
|
70 |
+
for metric, score in weighted_scores.items():
|
71 |
+
if score:
|
72 |
+
print('\t{}: {:.4f}.'.format(metric, score / len_all_data_loaders))
|
73 |
+
|
74 |
+
@torch.no_grad()
|
75 |
+
def main():
|
76 |
+
config = Config()
|
77 |
+
# Dataloader
|
78 |
+
test_loaders = {}
|
79 |
+
for testset in testsets.split('+'):
|
80 |
+
dataset = MyData(
|
81 |
+
datasets=testset,
|
82 |
+
image_size=config.size, is_train=False
|
83 |
+
)
|
84 |
+
_data_loader_test = torch.utils.data.DataLoader(
|
85 |
+
dataset=dataset, batch_size=config.batch_size_valid, num_workers=min(config.num_workers, config.batch_size_valid),
|
86 |
+
pin_memory=device != 'cpu', shuffle=False
|
87 |
+
)
|
88 |
+
print(len(_data_loader_test), "batches of valid dataloader {} have been created.".format(testset))
|
89 |
+
test_loaders[testset] = _data_loader_test
|
90 |
+
|
91 |
+
# Model, 3070MiB GPU memory for inference
|
92 |
+
model = BiRefNet(bb_pretrained=False).to(device)
|
93 |
+
models_evaluated = []
|
94 |
+
continous_sleep_time = 0
|
95 |
+
while True:
|
96 |
+
if (
|
97 |
+
(models_evaluated and continous_sleep_time > 60*60*2) or
|
98 |
+
(not models_evaluated and continous_sleep_time > 60*60*24)
|
99 |
+
):
|
100 |
+
# If no ckpt has been saved, we wait for 24h;
|
101 |
+
# elif some ckpts have been saved, we wait for 2h for new ones;
|
102 |
+
# else: exit this waiting.
|
103 |
+
print('Exiting the waiting for evaluation.')
|
104 |
+
break
|
105 |
+
models_evaluated_record = 'tmp_models_evaluated.txt'
|
106 |
+
if os.path.exists(models_evaluated_record):
|
107 |
+
with open(models_evaluated_record, 'r') as f:
|
108 |
+
models_evaluated_global = f.read().splitlines()
|
109 |
+
else:
|
110 |
+
models_evaluated_global = []
|
111 |
+
models_detected = [
|
112 |
+
m for idx_m, m in enumerate(sorted(
|
113 |
+
glob(os.path.join(ckpt_dir, '*.pth')),
|
114 |
+
key=lambda x: int(x.rstrip('.pth').split('epoch_')[-1]), reverse=True
|
115 |
+
)) if idx_m % args_eval.val_step == args_eval.program_id and m not in models_evaluated + models_evaluated_global
|
116 |
+
]
|
117 |
+
if models_detected:
|
118 |
+
from time import time
|
119 |
+
time_st = time()
|
120 |
+
# register the evaluated models
|
121 |
+
model_not_evaluated_latest = models_detected[0]
|
122 |
+
with open('tmp_models_evaluated.txt', 'a') as f:
|
123 |
+
f.write(model_not_evaluated_latest + '\n')
|
124 |
+
models_evaluated.append(model_not_evaluated_latest)
|
125 |
+
print('Loading {} for validation...'.format(model_not_evaluated_latest))
|
126 |
+
|
127 |
+
# evaluate the current model
|
128 |
+
state_dict = torch.load(model_not_evaluated_latest, map_location=device)
|
129 |
+
model.load_state_dict(state_dict, strict=False)
|
130 |
+
validate_model(model, test_loaders, int(model_not_evaluated_latest.rstrip('.pth').split('epoch_')[-1]))
|
131 |
+
continous_sleep_time = 0
|
132 |
+
print('Duration of this evaluation:', time() - time_st)
|
133 |
+
else:
|
134 |
+
sleep_interval = 60 * 2
|
135 |
+
sleep(sleep_interval)
|
136 |
+
continous_sleep_time += sleep_interval
|
137 |
+
continue
|
138 |
+
|
139 |
+
|
140 |
+
if __name__ == '__main__':
|
141 |
+
main()
|