File size: 4,714 Bytes
160b8f2
ab9a192
6643d46
 
160b8f2
6643d46
 
 
160b8f2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bdff8f5
160b8f2
 
 
 
 
 
 
 
 
 
 
 
a2238f4
a2fe5a2
160b8f2
 
6643d46
160b8f2
6643d46
160b8f2
bdff8f5
 
160b8f2
 
 
bdff8f5
160b8f2
 
6dd9966
160b8f2
a2238f4
160b8f2
 
1e0fb18
bdff8f5
 
160b8f2
 
 
 
 
 
 
 
 
 
ca16a0e
 
 
 
 
 
 
 
 
 
 
 
160b8f2
 
 
 
 
 
 
bdff8f5
160b8f2
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
# These HF deployment codes refer to https://huggingface.co/not-lain/BiRefNet/raw/main/handler.py.
from typing import Dict, List, Any, Tuple
import os
import requests
from io import BytesIO
import cv2
import numpy as np
from PIL import Image
import torch
from torchvision import transforms
from transformers import AutoModelForImageSegmentation

torch.set_float32_matmul_precision(["high", "highest"][0])

device = "cuda" if torch.cuda.is_available() else "cpu"

### image_proc.py
def refine_foreground(image, mask, r=90):
    if mask.size != image.size:
        mask = mask.resize(image.size)
    image = np.array(image) / 255.0
    mask = np.array(mask) / 255.0
    estimated_foreground = FB_blur_fusion_foreground_estimator_2(image, mask, r=r)
    image_masked = Image.fromarray((estimated_foreground * 255.0).astype(np.uint8))
    return image_masked


def FB_blur_fusion_foreground_estimator_2(image, alpha, r=90):
    # Thanks to the source: https://github.com/Photoroom/fast-foreground-estimation
    alpha = alpha[:, :, None]
    F, blur_B = FB_blur_fusion_foreground_estimator(image, image, image, alpha, r)
    return FB_blur_fusion_foreground_estimator(image, F, blur_B, alpha, r=6)[0]


def FB_blur_fusion_foreground_estimator(image, F, B, alpha, r=90):
    if isinstance(image, Image.Image):
        image = np.array(image) / 255.0
    blurred_alpha = cv2.blur(alpha, (r, r))[:, :, None]

    blurred_FA = cv2.blur(F * alpha, (r, r))
    blurred_F = blurred_FA / (blurred_alpha + 1e-5)

    blurred_B1A = cv2.blur(B * (1 - alpha), (r, r))
    blurred_B = blurred_B1A / ((1 - blurred_alpha) + 1e-5)
    F = blurred_F + alpha * \
        (image - alpha * blurred_F - (1 - alpha) * blurred_B)
    F = np.clip(F, 0, 1)
    return F, blurred_B


class ImagePreprocessor():
    def __init__(self, resolution: Tuple[int, int] = (1024, 1024)) -> None:
        self.transform_image = transforms.Compose([
            transforms.Resize(resolution),
            transforms.ToTensor(),
            transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
        ])

    def proc(self, image: Image.Image) -> torch.Tensor:
        image = self.transform_image(image)
        return image

usage_to_weights_file = {
    'General': 'BiRefNet',
    'General-HR': 'BiRefNet_HR',
    'General-Lite': 'BiRefNet_lite',
    'General-Lite-2K': 'BiRefNet_lite-2K',
    'General-reso_512': 'BiRefNet-reso_512',
    'Matting': 'BiRefNet-matting',
    'Portrait': 'BiRefNet-portrait',
    'DIS': 'BiRefNet-DIS5K',
    'HRSOD': 'BiRefNet-HRSOD',
    'COD': 'BiRefNet-COD',
    'DIS-TR_TEs': 'BiRefNet-DIS5K-TR_TEs',
    'General-legacy': 'BiRefNet-legacy'
}

# Choose the version of BiRefNet here.
usage = 'General-legacy'

# Set resolution
if usage in ['General-Lite-2K']:
    resolution = (2560, 1440)
elif usage in ['General-reso_512']:
    resolution = (512, 512)
elif usage in ['General-HR']:
    resolution = (2048, 2048)
else:
    resolution = (1024, 1024) 

half_precision = True

class EndpointHandler():
    def __init__(self, path=''):
        self.birefnet = AutoModelForImageSegmentation.from_pretrained(
            '/'.join(('zhengpeng7', usage_to_weights_file[usage])), trust_remote_code=True
        )
        self.birefnet.to(device)
        self.birefnet.eval()
        if half_precision:
            self.birefnet.half()

    def __call__(self, data: Dict[str, Any]):
        """
        data args:
            inputs (:obj: `str`)
            date (:obj: `str`)
        Return:
            A :obj:`list` | `dict`: will be serialized and returned
        """
        print('data["inputs"] = ', data["inputs"])
        image_src = data["inputs"]
        if isinstance(image_src, str):
            if os.path.isfile(image_src):
                image_ori = Image.open(image_src)
            else:
                response = requests.get(image_src)
                image_data = BytesIO(response.content)
                image_ori = Image.open(image_data)
        else:
            image_ori = Image.fromarray(image_src)

        image = image_ori.convert('RGB')
        # Preprocess the image
        image_preprocessor = ImagePreprocessor(resolution=tuple(resolution))
        image_proc = image_preprocessor.proc(image)
        image_proc = image_proc.unsqueeze(0)

        # Prediction
        with torch.no_grad():
            preds = self.birefnet(image_proc.to(device).half() if half_precision else image_proc.to(device))[-1].sigmoid().cpu()
        pred = preds[0].squeeze()

        # Show Results
        pred_pil = transforms.ToPILImage()(pred)
        image_masked = refine_foreground(image, pred_pil)
        image_masked.putalpha(pred_pil.resize(image.size))
        return image_masked