File size: 15,493 Bytes
7d21475
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
#coding:utf-8
import os
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"
import numpy as np
import nibabel as nib
from PIL import Image
from skimage import morphology
from skimage.transform import resize
import cv2
import os
import numpy as np
from skimage import measure
import skimage
import numpy.random as npr

def get_vertbody(seg0):
    y = []
    count = []
    seg = skimage.morphology.dilation(seg0, skimage.morphology.square(2))
    label, num = measure.label(seg, connectivity=2, background=0, return_num=True)
    out = np.zeros(label.shape)
    loc_list = []
    for i in range(1, num + 1):
        loc = np.where(label == i)
        loc_list.append(loc)
        count.append(loc[0].shape[0])
        y.append(min(list(loc[1])))
    if num == 1:
        print("number=1")
        Num = 0
        countbody = np.sum(label)
    else:
        i = np.argsort(np.array(count))
        if y[i[-1]] < y[i[-2]] or count[i[-2]] < 30:

            Num = i[-1]
            countbody = count[i[-1]]
        else:
            Num = i[-2]
            countbody = count[i[-2]]

    out[loc_list[Num]] = 1
    xx = np.max(loc_list[Num][0])
    xi = np.min(loc_list[Num][0])
    yx = np.max(loc_list[Num][1])
    yi = np.min(loc_list[Num][1])
    xm = np.mean(loc_list[Num][0])
    ym = np.mean(loc_list[Num][1])
    out2 = np.zeros((60,60))
    out = out*seg0
    out2[2:3+xx-xi,2:3+yx-yi] = out[xi:xx+1,yi:yx+1]
    return out2,out,np.array([xm,ym])

def window(img,win_min,win_max):
    #骨窗窗宽窗位
    imgmax = np.max(img)
    imgmin = np.min(img)
    if imgmax<win_max and imgmin>win_min:
        return img
    for i in range(img.shape[0]):
        img[i] = 255.0 * (img[i] - win_min) / (win_max - win_min)
        min_index = img[i] < 0
        img[i][min_index] = 0
        max_index = img[i] > 255
        img[i][max_index] = 255
    return img

# 采取最小旋转矩形框,使用固定scale即不进行扩增
def process_spine_data(ct_path,label_path,label_id,output_size):

        # 读取CT数据和标注数据
        #ct_data = nib.load(ct_path).get_fdata()
        #label_data = nib.load(label_path).get_fdata()
        ct_data = np.load(ct_path)
        label_data = np.load(label_path)
        binary_label = label_data.copy()
        binary_label[binary_label!=0]=255
        
        
        # 进行归一化并*255
        ct_data =  window(ct_data, -300, 800)

        label = int(label_id)
            
        
        loc = np.where(label_data == label)
        
        #if np.isnan(loc[2]):
        #    print(ct_path,label)

        try:
            center_z = int(np.mean(loc[2]))
        except:
            print("发生 ValueError 异常")
            print("loc 的值为:", loc)
            print(ct_path,label)
        _, _, center_z = np.array(np.where(label_data == label)).mean(axis=1).astype(int)

            
        # 对中间层面的椎体去除横突
        label_binary = np.zeros(label_data.shape)
        label_binary[loc] = 1
        y0 = min(loc[1])
        y1 = max(loc[1])
        z0 = min(loc[0])
        z1 = max(loc[0])

        img2d = label_binary[z0:z1 + 1, y0:y1 + 1, center_z]
            
        _, img2d_vertbody, center_point = get_vertbody(img2d)

            
        img2d_vertbody_points = np.where(img2d_vertbody==1)
        img2d_vertbody_aligned=np.zeros_like(label_data[:,:,0], np.uint8)
        # 如果将GT改为生成椎体mask,这样子就不需要纹理灰度信息了
        img2d_vertbody_aligned[img2d_vertbody_points[0]+z0,img2d_vertbody_points[1]+y0]=1
            
        # 计算椎体的中心位置
        center_y,center_x = int(np.mean(img2d_vertbody_points[0])+z0),int(np.mean(img2d_vertbody_points[1])+y0)

        # 截取224x224的矩形框在中心层面
        center_slice = ct_data[:, :, center_z].copy()
        center_label_slice = binary_label[:, :, center_z].copy()
 
        # 创建224x224的矩形框
        rect_slice = np.zeros(output_size, dtype=np.uint8)
        rect_label_slice = np.zeros(output_size, dtype=np.uint8)

        # 计算矩形框的位置
        min_y, max_y = max(0, output_size[0]//2 - center_y), min(output_size[0], output_size[0]//2 + (center_slice.shape[0] - center_y))
        min_x, max_x = max(0, output_size[0]//2 - center_x), min(output_size[0], output_size[0]//2 + (center_slice.shape[1] - center_x))

        # 将rect_slice放在中间
        rect_slice[min_y:max_y, min_x:max_x] = center_slice[max(center_y - output_size[0]//2, 0):min(center_y + output_size[0]//2, center_slice.shape[0]),
                                                                max(center_x - output_size[0]//2, 0):min(center_x +output_size[0]//2, center_slice.shape[1])]
            
        rect_label_slice[min_y:max_y, min_x:max_x] = center_label_slice[max(center_y - output_size[0]//2, 0):min(center_y + output_size[0]//2, center_slice.shape[0]),
                                                                max(center_x - output_size[0]//2, 0):min(center_x + output_size[0]//2, center_slice.shape[1])]

        # 获取椎体主体的最小旋转矩形
        contours, _ = cv2.findContours(img2d_vertbody_aligned.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        rect = cv2.minAreaRect(contours[0])
            
        # 将最小旋转矩形的四个顶点转换为整数坐标
        rect_points = np.int0(cv2.boxPoints(rect))
        # 对该最小矩形进行缩放
        # 缩放因子
        scale_factor = 1.2
        center = rect[0]
        scaled_rect_points = ((rect_points - center) * scale_factor) + center
        scaled_rect_points = np.int0(scaled_rect_points)

        # 创建包围椎体的最小矩形
        bbox_image = np.zeros_like(label_data[:,:,0], np.uint8)
        bbox_cv2 = cv2.cvtColor(bbox_image, cv2.COLOR_GRAY2BGR)
            
        cv2.fillPoly(bbox_cv2, [scaled_rect_points], [255,255,255])
        bbox_cv2 = cv2.cvtColor(bbox_cv2, cv2.COLOR_BGR2GRAY)

        for other_label in range(8, 26):  # 假设label范围为1到25
            if other_label != label:
            # 找到其他label的区域
                other_label_locs = np.where(label_data[:,:,center_z] == other_label)
        
            # 检查这些区域是否在bbox内,如果在,则将这部分的masked_label设为0
                for y, x in zip(*other_label_locs):
                    if bbox_cv2[y, x] == 255:  # 如果在bbox内
                        bbox_cv2[y, x] = 0  # 将其他label区域设置为0
            


        masked_image = center_slice.copy()
        masked_image[np.where(bbox_cv2==255)[0],np.where(bbox_cv2==255)[1]] = 0
        masked_label = center_label_slice.copy()
        masked_label[np.where(bbox_cv2==255)[0],np.where(bbox_cv2==255)[1]] = 0

        masked_slice = np.zeros(output_size, dtype=np.uint8)
        masked_slice[min_y:max_y, min_x:max_x] =masked_image[max(center_y - output_size[0]//2, 0):min(center_y + output_size[0]//2, center_slice.shape[0]),
                                                                max(center_x - output_size[0]//2, 0):min(center_x +output_size[0]//2, center_slice.shape[1])]
           
        masked_label_slice = np.zeros(output_size, dtype=np.uint8)
        masked_label_slice[min_y:max_y, min_x:max_x] = masked_label[max(center_y - output_size[0]//2, 0):min(center_y + output_size[0]//2, center_slice.shape[0]),
                                                                max(center_x - output_size[0]//2, 0):min(center_x +output_size[0]//2, center_slice.shape[1])]
            
        # 保存mask区域的二值化图像
        mask_binary = np.zeros(output_size, dtype=np.uint8)
        mask_binary[min_y:max_y, min_x:max_x] = bbox_cv2[max(center_y - output_size[0]//2, 0):min(center_y + output_size[0]//2, center_slice.shape[0]),
                                                                max(center_x - output_size[0]//2, 0):min(center_x +output_size[0]//2, center_slice.shape[1])]
        
        return rect_slice,rect_label_slice,mask_binary,masked_slice,masked_label_slice


def process_spine_data_aug(ct_path,label_path,label_id,output_size):

        ct_data = np.load(ct_path)
        label_data = np.load(label_path)
        binary_label = label_data.copy()
        binary_label[binary_label!=0]=255
        
        
        # 进行归一化并*255
        ct_data =  window(ct_data, -300, 800)
        
        label = int(label_id)
   
        loc = np.where(label_data == label)
        
        try:
            center_z = int(np.mean(loc[2]))
        except:
            print("发生 ValueError 异常")
            print("loc 的值为:", loc)
            print(label_path,label)
        _, _, center_z = np.array(np.where(label_data == label)).mean(axis=1).astype(int)

        # 对中间层面的椎体去除横突
        label_binary = np.zeros(label_data.shape)
        label_binary[loc] = 1
        y0 = min(loc[1])
        y1 = max(loc[1])
        z0 = min(loc[0])
        z1 = max(loc[0])

        img2d = label_binary[z0:z1 + 1, y0:y1 + 1, center_z]
            
        _, img2d_vertbody, center_point = get_vertbody(img2d)

            
        img2d_vertbody_points = np.where(img2d_vertbody==1)
        img2d_vertbody_aligned=np.zeros_like(label_data[:,:,0], np.uint8)
        # 如果将GT改为生成椎体mask,这样子就不需要纹理灰度信息了
        img2d_vertbody_aligned[img2d_vertbody_points[0]+z0,img2d_vertbody_points[1]+y0]=1
            
            # 计算椎体的中心位置
        center_y,center_x = int(np.mean(img2d_vertbody_points[0])+z0),int(np.mean(img2d_vertbody_points[1])+y0)

        # 截取224x224的矩形框在中心层面
        center_slice = ct_data[:, :, center_z].copy()
        center_label_slice = binary_label[:, :, center_z].copy()
            #center_slice[img2d_vertbody_aligned==1]=255

        crop_height, crop_width = output_size
             # 计算椎体中心点相对于原始图像边界的最大可移动距离
        max_shift_y = min(center_y, center_slice.shape[0] - center_y, crop_height//2)/2
        max_shift_x = min(center_x, center_slice.shape[1] - center_x, crop_width//2)/2
            
            # 随机选择偏移量,保证椎体完全在裁剪图像内
        shift_y = npr.randint(-max_shift_y, max_shift_y + 1)
        shift_x = npr.randint(-max_shift_x, max_shift_x + 1)

            # 计算随机化后的裁剪起始点
        start_y = center_y + shift_y - crop_height // 2
        start_x = center_x + shift_x - crop_width // 2

            # 确定裁剪区域在原始图像内的实际位置
        actual_start_y = max(start_y, 0)
        actual_start_x = max(start_x, 0)
        actual_end_y = min(start_y + crop_height, center_slice.shape[0])
        actual_end_x = min(start_x + crop_width, center_slice.shape[1])
            
            # 创建224x224的矩形框
        rect_slice = np.zeros(output_size, dtype=np.uint8)
        rect_label_slice = np.zeros(output_size, dtype=np.uint8)

            # 将原始图像的相应区域复制到裁剪后的图像
        rect_slice[max(-start_y, 0):max(-start_y, 0)+actual_end_y-actual_start_y, 
                    max(-start_x, 0):max(-start_x, 0)+actual_end_x-actual_start_x] = \
                    center_slice[actual_start_y:actual_end_y, actual_start_x:actual_end_x]
        rect_label_slice[max(-start_y, 0):max(-start_y, 0)+actual_end_y-actual_start_y, 
                    max(-start_x, 0):max(-start_x, 0)+actual_end_x-actual_start_x] = \
                        center_label_slice[actual_start_y:actual_end_y, actual_start_x:actual_end_x]

            # 获取椎体主体的最小旋转矩形
        contours, _ = cv2.findContours(img2d_vertbody_aligned.astype(np.uint8), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
        rect = cv2.minAreaRect(contours[0])
        contour = contours[0]
            
            # 将最小旋转矩形的四个顶点转换为整数坐标
        rect_points = np.int0(cv2.boxPoints(rect))         
            
            # 对该最小矩形进行缩放
            # 缩放因子
            # 对最小旋转矩形进行1.2-1.4之间的随机缩放
        scale_factor = npr.uniform(1.1, 1.3)
        center = rect[0]
        scaled_rect_points = ((rect_points - center) * scale_factor) + center
        scaled_rect_points = np.int0(scaled_rect_points)
            # 创建包围椎体的最小矩形
        bbox_image = np.zeros_like(label_data[:,:,0], np.uint8)
        bbox_cv2 = cv2.cvtColor(bbox_image, cv2.COLOR_GRAY2BGR)
            
        cv2.fillPoly(bbox_cv2, [scaled_rect_points], [255,255,255])
        bbox_cv2 = cv2.cvtColor(bbox_cv2, cv2.COLOR_BGR2GRAY)

            
            # 获取最小外接圆
            #(xc, yc), radius = cv2.minEnclosingCircle(contour)
            #center_circle = (int(xc), int(yc))
            #radius = int(radius*scale_factor)
            
            # 绘制最小外接圆到 bbox_cv2 上
            #cv2.circle(bbox_cv2, center_circle, radius, (255), -1)  # 用白色填充圆形
            
            # 获取最小外接矩形(非旋转)
            #x, y, w, h = cv2.boundingRect(contour)
            # 绘制最小外接矩形到 bbox_cv2 上
            #cv2.rectangle(bbox_cv2, (x, y), (x + w, y + h), (255), -1)  # 用白色填充矩形
            
            # 应用bbox_cv2后,对label_data进行检查和处理
            # 将bbox内其他label的区域设置为0
        for other_label in range(8, 26):  # 假设label范围为1到25
            if other_label != label:
                # 找到其他label的区域
                other_label_locs = np.where(label_data[:,:,center_z] == other_label)
        
                # 检查这些区域是否在bbox内,如果在,则将这部分的masked_label设为0
                for y, x in zip(*other_label_locs):
                    if bbox_cv2[y, x] == 255:  # 如果在bbox内
                        bbox_cv2[y, x] = 0  # 将其他label区域设置为0
            

            # 将椎体mask掉
        masked_image = center_slice.copy()
        masked_image[np.where(bbox_cv2==255)[0],np.where(bbox_cv2==255)[1]] = 0
        masked_label = center_label_slice.copy()
        masked_label[np.where(bbox_cv2==255)[0],np.where(bbox_cv2==255)[1]] = 0

        masked_slice = np.zeros(output_size, dtype=np.uint8)
        masked_slice[max(-start_y, 0):max(-start_y, 0)+actual_end_y-actual_start_y, 
                    max(-start_x, 0):max(-start_x, 0)+actual_end_x-actual_start_x] =\
                        masked_image[actual_start_y:actual_end_y, actual_start_x:actual_end_x]
           
        masked_label_slice = np.zeros(output_size, dtype=np.uint8)
        masked_label_slice[max(-start_y, 0):max(-start_y, 0)+actual_end_y-actual_start_y, 
                    max(-start_x, 0):max(-start_x, 0)+actual_end_x-actual_start_x] = \
                        masked_label[actual_start_y:actual_end_y, actual_start_x:actual_end_x]
            
            # 保存mask区域的二值化图像
        mask_binary = np.zeros(output_size, dtype=np.uint8)
        mask_binary[max(-start_y, 0):max(-start_y, 0)+actual_end_y-actual_start_y, 
                    max(-start_x, 0):max(-start_x, 0)+actual_end_x-actual_start_x] = \
            bbox_cv2[actual_start_y:actual_end_y, actual_start_x:actual_end_x]
                
        return rect_slice,rect_label_slice,mask_binary,masked_slice,masked_label_slice