ZhMax commited on
Commit
1f7348d
·
verified ·
1 Parent(s): f4a2cb8

Upload folder using huggingface_hub

Browse files
lora_wiki/README.md ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: peft
3
+ base_model: /home/llm_compression/Quantization/Ebft/llama-2-7b-ebft-sparsegpt-outlier-wiki-block-outlier
4
+ ---
5
+
6
+ # Model Card for Model ID
7
+
8
+ <!-- Provide a quick summary of what the model is/does. -->
9
+
10
+
11
+
12
+ ## Model Details
13
+
14
+ ### Model Description
15
+
16
+ <!-- Provide a longer summary of what this model is. -->
17
+
18
+
19
+
20
+ - **Developed by:** [More Information Needed]
21
+ - **Funded by [optional]:** [More Information Needed]
22
+ - **Shared by [optional]:** [More Information Needed]
23
+ - **Model type:** [More Information Needed]
24
+ - **Language(s) (NLP):** [More Information Needed]
25
+ - **License:** [More Information Needed]
26
+ - **Finetuned from model [optional]:** [More Information Needed]
27
+
28
+ ### Model Sources [optional]
29
+
30
+ <!-- Provide the basic links for the model. -->
31
+
32
+ - **Repository:** [More Information Needed]
33
+ - **Paper [optional]:** [More Information Needed]
34
+ - **Demo [optional]:** [More Information Needed]
35
+
36
+ ## Uses
37
+
38
+ <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
+
40
+ ### Direct Use
41
+
42
+ <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
+
44
+ [More Information Needed]
45
+
46
+ ### Downstream Use [optional]
47
+
48
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
+
50
+ [More Information Needed]
51
+
52
+ ### Out-of-Scope Use
53
+
54
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
+
56
+ [More Information Needed]
57
+
58
+ ## Bias, Risks, and Limitations
59
+
60
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
61
+
62
+ [More Information Needed]
63
+
64
+ ### Recommendations
65
+
66
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
+
68
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
69
+
70
+ ## How to Get Started with the Model
71
+
72
+ Use the code below to get started with the model.
73
+
74
+ [More Information Needed]
75
+
76
+ ## Training Details
77
+
78
+ ### Training Data
79
+
80
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
+
82
+ [More Information Needed]
83
+
84
+ ### Training Procedure
85
+
86
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
+
88
+ #### Preprocessing [optional]
89
+
90
+ [More Information Needed]
91
+
92
+
93
+ #### Training Hyperparameters
94
+
95
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
+
97
+ #### Speeds, Sizes, Times [optional]
98
+
99
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
+
101
+ [More Information Needed]
102
+
103
+ ## Evaluation
104
+
105
+ <!-- This section describes the evaluation protocols and provides the results. -->
106
+
107
+ ### Testing Data, Factors & Metrics
108
+
109
+ #### Testing Data
110
+
111
+ <!-- This should link to a Dataset Card if possible. -->
112
+
113
+ [More Information Needed]
114
+
115
+ #### Factors
116
+
117
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
+
119
+ [More Information Needed]
120
+
121
+ #### Metrics
122
+
123
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
+
125
+ [More Information Needed]
126
+
127
+ ### Results
128
+
129
+ [More Information Needed]
130
+
131
+ #### Summary
132
+
133
+
134
+
135
+ ## Model Examination [optional]
136
+
137
+ <!-- Relevant interpretability work for the model goes here -->
138
+
139
+ [More Information Needed]
140
+
141
+ ## Environmental Impact
142
+
143
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
+
145
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
+
147
+ - **Hardware Type:** [More Information Needed]
148
+ - **Hours used:** [More Information Needed]
149
+ - **Cloud Provider:** [More Information Needed]
150
+ - **Compute Region:** [More Information Needed]
151
+ - **Carbon Emitted:** [More Information Needed]
152
+
153
+ ## Technical Specifications [optional]
154
+
155
+ ### Model Architecture and Objective
156
+
157
+ [More Information Needed]
158
+
159
+ ### Compute Infrastructure
160
+
161
+ [More Information Needed]
162
+
163
+ #### Hardware
164
+
165
+ [More Information Needed]
166
+
167
+ #### Software
168
+
169
+ [More Information Needed]
170
+
171
+ ## Citation [optional]
172
+
173
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
+
175
+ **BibTeX:**
176
+
177
+ [More Information Needed]
178
+
179
+ **APA:**
180
+
181
+ [More Information Needed]
182
+
183
+ ## Glossary [optional]
184
+
185
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
+
187
+ [More Information Needed]
188
+
189
+ ## More Information [optional]
190
+
191
+ [More Information Needed]
192
+
193
+ ## Model Card Authors [optional]
194
+
195
+ [More Information Needed]
196
+
197
+ ## Model Card Contact
198
+
199
+ [More Information Needed]
200
+ ### Framework versions
201
+
202
+ - PEFT 0.9.0
lora_wiki/adapter_config.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/llm_compression/Quantization/Ebft/llama-2-7b-ebft-sparsegpt-outlier-wiki-block-outlier",
5
+ "bias": "none",
6
+ "fan_in_fan_out": false,
7
+ "inference_mode": true,
8
+ "init_lora_weights": true,
9
+ "layers_pattern": null,
10
+ "layers_to_transform": null,
11
+ "loftq_config": {},
12
+ "lora_alpha": 32,
13
+ "lora_dropout": 0.1,
14
+ "megatron_config": null,
15
+ "megatron_core": "megatron.core",
16
+ "modules_to_save": null,
17
+ "peft_type": "LORA",
18
+ "r": 64,
19
+ "rank_pattern": {},
20
+ "revision": null,
21
+ "target_modules": [
22
+ "v_proj",
23
+ "gate_proj",
24
+ "up_proj",
25
+ "down_proj",
26
+ "k_proj",
27
+ "o_proj",
28
+ "q_proj"
29
+ ],
30
+ "task_type": "CAUSAL_LM",
31
+ "use_dora": false,
32
+ "use_rslora": false
33
+ }
lora_wiki/adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:49709d2c8a30a74bd0052989b67c114a790a8fce1174d6eb74e643db98769a62
3
+ size 319876480
lora_wiki/rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e96907e0f3841986500088b17fdcb9c4686f42b122264981a8f26b8dec7cebf7
3
+ size 14244
lora_wiki/scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:804313fcf5eb7df1c2808319014a74abe62db8d2c2b80e85464884a6da5c013e
3
+ size 1064
lora_wiki/special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "</s>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
lora_wiki/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
lora_wiki/tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
lora_wiki/tokenizer_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "added_tokens_decoder": {
5
+ "0": {
6
+ "content": "<unk>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "1": {
14
+ "content": "<s>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "2": {
22
+ "content": "</s>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ }
29
+ },
30
+ "bos_token": "<s>",
31
+ "clean_up_tokenization_spaces": false,
32
+ "eos_token": "</s>",
33
+ "legacy": false,
34
+ "model_max_length": 1000000000000000019884624838656,
35
+ "pad_token": "</s>",
36
+ "padding_side": "right",
37
+ "sp_model_kwargs": {},
38
+ "spaces_between_special_tokens": false,
39
+ "tokenizer_class": "LlamaTokenizer",
40
+ "unk_token": "<unk>",
41
+ "use_default_system_prompt": false
42
+ }
lora_wiki/trainer_state.json ADDED
@@ -0,0 +1,3021 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 11.594202898550725,
5
+ "eval_steps": 500,
6
+ "global_step": 500,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.02,
13
+ "learning_rate": 3.75e-06,
14
+ "loss": 2.586,
15
+ "step": 1
16
+ },
17
+ {
18
+ "epoch": 0.05,
19
+ "learning_rate": 7.5e-06,
20
+ "loss": 2.5846,
21
+ "step": 2
22
+ },
23
+ {
24
+ "epoch": 0.07,
25
+ "learning_rate": 1.125e-05,
26
+ "loss": 2.5617,
27
+ "step": 3
28
+ },
29
+ {
30
+ "epoch": 0.09,
31
+ "learning_rate": 1.5e-05,
32
+ "loss": 2.5385,
33
+ "step": 4
34
+ },
35
+ {
36
+ "epoch": 0.12,
37
+ "learning_rate": 1.8750000000000002e-05,
38
+ "loss": 2.5426,
39
+ "step": 5
40
+ },
41
+ {
42
+ "epoch": 0.14,
43
+ "learning_rate": 2.25e-05,
44
+ "loss": 2.5664,
45
+ "step": 6
46
+ },
47
+ {
48
+ "epoch": 0.16,
49
+ "learning_rate": 2.625e-05,
50
+ "loss": 2.5914,
51
+ "step": 7
52
+ },
53
+ {
54
+ "epoch": 0.19,
55
+ "learning_rate": 3e-05,
56
+ "loss": 2.4594,
57
+ "step": 8
58
+ },
59
+ {
60
+ "epoch": 0.21,
61
+ "learning_rate": 2.9939024390243903e-05,
62
+ "loss": 2.5858,
63
+ "step": 9
64
+ },
65
+ {
66
+ "epoch": 0.23,
67
+ "learning_rate": 2.9878048780487805e-05,
68
+ "loss": 2.5069,
69
+ "step": 10
70
+ },
71
+ {
72
+ "epoch": 0.26,
73
+ "learning_rate": 2.9817073170731707e-05,
74
+ "loss": 2.5146,
75
+ "step": 11
76
+ },
77
+ {
78
+ "epoch": 0.28,
79
+ "learning_rate": 2.975609756097561e-05,
80
+ "loss": 2.4025,
81
+ "step": 12
82
+ },
83
+ {
84
+ "epoch": 0.3,
85
+ "learning_rate": 2.9695121951219515e-05,
86
+ "loss": 2.4719,
87
+ "step": 13
88
+ },
89
+ {
90
+ "epoch": 0.32,
91
+ "learning_rate": 2.9634146341463413e-05,
92
+ "loss": 2.4496,
93
+ "step": 14
94
+ },
95
+ {
96
+ "epoch": 0.35,
97
+ "learning_rate": 2.9573170731707316e-05,
98
+ "loss": 2.3463,
99
+ "step": 15
100
+ },
101
+ {
102
+ "epoch": 0.37,
103
+ "learning_rate": 2.951219512195122e-05,
104
+ "loss": 2.4185,
105
+ "step": 16
106
+ },
107
+ {
108
+ "epoch": 0.39,
109
+ "learning_rate": 2.9451219512195123e-05,
110
+ "loss": 2.3562,
111
+ "step": 17
112
+ },
113
+ {
114
+ "epoch": 0.42,
115
+ "learning_rate": 2.9390243902439022e-05,
116
+ "loss": 2.3574,
117
+ "step": 18
118
+ },
119
+ {
120
+ "epoch": 0.44,
121
+ "learning_rate": 2.9329268292682927e-05,
122
+ "loss": 2.3392,
123
+ "step": 19
124
+ },
125
+ {
126
+ "epoch": 0.46,
127
+ "learning_rate": 2.926829268292683e-05,
128
+ "loss": 2.2794,
129
+ "step": 20
130
+ },
131
+ {
132
+ "epoch": 0.49,
133
+ "learning_rate": 2.9207317073170735e-05,
134
+ "loss": 2.2295,
135
+ "step": 21
136
+ },
137
+ {
138
+ "epoch": 0.51,
139
+ "learning_rate": 2.9146341463414634e-05,
140
+ "loss": 2.2596,
141
+ "step": 22
142
+ },
143
+ {
144
+ "epoch": 0.53,
145
+ "learning_rate": 2.9085365853658536e-05,
146
+ "loss": 2.1936,
147
+ "step": 23
148
+ },
149
+ {
150
+ "epoch": 0.56,
151
+ "learning_rate": 2.902439024390244e-05,
152
+ "loss": 2.1734,
153
+ "step": 24
154
+ },
155
+ {
156
+ "epoch": 0.58,
157
+ "learning_rate": 2.8963414634146343e-05,
158
+ "loss": 2.1466,
159
+ "step": 25
160
+ },
161
+ {
162
+ "epoch": 0.6,
163
+ "learning_rate": 2.8902439024390242e-05,
164
+ "loss": 2.119,
165
+ "step": 26
166
+ },
167
+ {
168
+ "epoch": 0.63,
169
+ "learning_rate": 2.8841463414634148e-05,
170
+ "loss": 2.0868,
171
+ "step": 27
172
+ },
173
+ {
174
+ "epoch": 0.65,
175
+ "learning_rate": 2.878048780487805e-05,
176
+ "loss": 2.1283,
177
+ "step": 28
178
+ },
179
+ {
180
+ "epoch": 0.67,
181
+ "learning_rate": 2.8719512195121952e-05,
182
+ "loss": 2.0504,
183
+ "step": 29
184
+ },
185
+ {
186
+ "epoch": 0.7,
187
+ "learning_rate": 2.8658536585365854e-05,
188
+ "loss": 1.9765,
189
+ "step": 30
190
+ },
191
+ {
192
+ "epoch": 0.72,
193
+ "learning_rate": 2.8597560975609756e-05,
194
+ "loss": 1.9256,
195
+ "step": 31
196
+ },
197
+ {
198
+ "epoch": 0.74,
199
+ "learning_rate": 2.8536585365853658e-05,
200
+ "loss": 2.0544,
201
+ "step": 32
202
+ },
203
+ {
204
+ "epoch": 0.77,
205
+ "learning_rate": 2.8475609756097564e-05,
206
+ "loss": 2.0002,
207
+ "step": 33
208
+ },
209
+ {
210
+ "epoch": 0.79,
211
+ "learning_rate": 2.8414634146341462e-05,
212
+ "loss": 1.9999,
213
+ "step": 34
214
+ },
215
+ {
216
+ "epoch": 0.81,
217
+ "learning_rate": 2.8353658536585365e-05,
218
+ "loss": 2.0487,
219
+ "step": 35
220
+ },
221
+ {
222
+ "epoch": 0.83,
223
+ "learning_rate": 2.829268292682927e-05,
224
+ "loss": 2.0628,
225
+ "step": 36
226
+ },
227
+ {
228
+ "epoch": 0.86,
229
+ "learning_rate": 2.8231707317073172e-05,
230
+ "loss": 2.0396,
231
+ "step": 37
232
+ },
233
+ {
234
+ "epoch": 0.88,
235
+ "learning_rate": 2.817073170731707e-05,
236
+ "loss": 1.9948,
237
+ "step": 38
238
+ },
239
+ {
240
+ "epoch": 0.9,
241
+ "learning_rate": 2.8109756097560976e-05,
242
+ "loss": 1.9887,
243
+ "step": 39
244
+ },
245
+ {
246
+ "epoch": 0.93,
247
+ "learning_rate": 2.804878048780488e-05,
248
+ "loss": 2.0597,
249
+ "step": 40
250
+ },
251
+ {
252
+ "epoch": 0.95,
253
+ "learning_rate": 2.7987804878048784e-05,
254
+ "loss": 2.0228,
255
+ "step": 41
256
+ },
257
+ {
258
+ "epoch": 0.97,
259
+ "learning_rate": 2.7926829268292683e-05,
260
+ "loss": 2.0505,
261
+ "step": 42
262
+ },
263
+ {
264
+ "epoch": 1.0,
265
+ "learning_rate": 2.7865853658536585e-05,
266
+ "loss": 1.9953,
267
+ "step": 43
268
+ },
269
+ {
270
+ "epoch": 1.02,
271
+ "learning_rate": 2.780487804878049e-05,
272
+ "loss": 2.061,
273
+ "step": 44
274
+ },
275
+ {
276
+ "epoch": 1.04,
277
+ "learning_rate": 2.7743902439024393e-05,
278
+ "loss": 2.01,
279
+ "step": 45
280
+ },
281
+ {
282
+ "epoch": 1.07,
283
+ "learning_rate": 2.768292682926829e-05,
284
+ "loss": 1.9348,
285
+ "step": 46
286
+ },
287
+ {
288
+ "epoch": 1.09,
289
+ "learning_rate": 2.7621951219512197e-05,
290
+ "loss": 2.0096,
291
+ "step": 47
292
+ },
293
+ {
294
+ "epoch": 1.11,
295
+ "learning_rate": 2.75609756097561e-05,
296
+ "loss": 1.9776,
297
+ "step": 48
298
+ },
299
+ {
300
+ "epoch": 1.14,
301
+ "learning_rate": 2.75e-05,
302
+ "loss": 1.9766,
303
+ "step": 49
304
+ },
305
+ {
306
+ "epoch": 1.16,
307
+ "learning_rate": 2.7439024390243903e-05,
308
+ "loss": 1.963,
309
+ "step": 50
310
+ },
311
+ {
312
+ "epoch": 1.18,
313
+ "learning_rate": 2.7378048780487805e-05,
314
+ "loss": 1.939,
315
+ "step": 51
316
+ },
317
+ {
318
+ "epoch": 1.21,
319
+ "learning_rate": 2.7317073170731707e-05,
320
+ "loss": 1.9372,
321
+ "step": 52
322
+ },
323
+ {
324
+ "epoch": 1.23,
325
+ "learning_rate": 2.7256097560975613e-05,
326
+ "loss": 1.9914,
327
+ "step": 53
328
+ },
329
+ {
330
+ "epoch": 1.25,
331
+ "learning_rate": 2.719512195121951e-05,
332
+ "loss": 1.9472,
333
+ "step": 54
334
+ },
335
+ {
336
+ "epoch": 1.28,
337
+ "learning_rate": 2.7134146341463414e-05,
338
+ "loss": 1.9727,
339
+ "step": 55
340
+ },
341
+ {
342
+ "epoch": 1.3,
343
+ "learning_rate": 2.707317073170732e-05,
344
+ "loss": 1.9598,
345
+ "step": 56
346
+ },
347
+ {
348
+ "epoch": 1.32,
349
+ "learning_rate": 2.701219512195122e-05,
350
+ "loss": 1.913,
351
+ "step": 57
352
+ },
353
+ {
354
+ "epoch": 1.34,
355
+ "learning_rate": 2.695121951219512e-05,
356
+ "loss": 1.9835,
357
+ "step": 58
358
+ },
359
+ {
360
+ "epoch": 1.37,
361
+ "learning_rate": 2.6890243902439026e-05,
362
+ "loss": 1.9365,
363
+ "step": 59
364
+ },
365
+ {
366
+ "epoch": 1.39,
367
+ "learning_rate": 2.6829268292682928e-05,
368
+ "loss": 1.9472,
369
+ "step": 60
370
+ },
371
+ {
372
+ "epoch": 1.41,
373
+ "learning_rate": 2.6768292682926833e-05,
374
+ "loss": 1.9362,
375
+ "step": 61
376
+ },
377
+ {
378
+ "epoch": 1.44,
379
+ "learning_rate": 2.6707317073170732e-05,
380
+ "loss": 1.9834,
381
+ "step": 62
382
+ },
383
+ {
384
+ "epoch": 1.46,
385
+ "learning_rate": 2.6646341463414634e-05,
386
+ "loss": 1.9174,
387
+ "step": 63
388
+ },
389
+ {
390
+ "epoch": 1.48,
391
+ "learning_rate": 2.658536585365854e-05,
392
+ "loss": 1.9143,
393
+ "step": 64
394
+ },
395
+ {
396
+ "epoch": 1.51,
397
+ "learning_rate": 2.652439024390244e-05,
398
+ "loss": 1.9332,
399
+ "step": 65
400
+ },
401
+ {
402
+ "epoch": 1.53,
403
+ "learning_rate": 2.646341463414634e-05,
404
+ "loss": 1.9531,
405
+ "step": 66
406
+ },
407
+ {
408
+ "epoch": 1.55,
409
+ "learning_rate": 2.6402439024390246e-05,
410
+ "loss": 1.9712,
411
+ "step": 67
412
+ },
413
+ {
414
+ "epoch": 1.58,
415
+ "learning_rate": 2.6341463414634148e-05,
416
+ "loss": 1.8767,
417
+ "step": 68
418
+ },
419
+ {
420
+ "epoch": 1.6,
421
+ "learning_rate": 2.628048780487805e-05,
422
+ "loss": 1.9734,
423
+ "step": 69
424
+ },
425
+ {
426
+ "epoch": 1.62,
427
+ "learning_rate": 2.6219512195121952e-05,
428
+ "loss": 1.9125,
429
+ "step": 70
430
+ },
431
+ {
432
+ "epoch": 1.65,
433
+ "learning_rate": 2.6158536585365854e-05,
434
+ "loss": 1.9498,
435
+ "step": 71
436
+ },
437
+ {
438
+ "epoch": 1.67,
439
+ "learning_rate": 2.6097560975609756e-05,
440
+ "loss": 1.9364,
441
+ "step": 72
442
+ },
443
+ {
444
+ "epoch": 1.69,
445
+ "learning_rate": 2.603658536585366e-05,
446
+ "loss": 1.9647,
447
+ "step": 73
448
+ },
449
+ {
450
+ "epoch": 1.72,
451
+ "learning_rate": 2.597560975609756e-05,
452
+ "loss": 1.9455,
453
+ "step": 74
454
+ },
455
+ {
456
+ "epoch": 1.74,
457
+ "learning_rate": 2.5914634146341463e-05,
458
+ "loss": 2.0236,
459
+ "step": 75
460
+ },
461
+ {
462
+ "epoch": 1.76,
463
+ "learning_rate": 2.5853658536585368e-05,
464
+ "loss": 1.941,
465
+ "step": 76
466
+ },
467
+ {
468
+ "epoch": 1.79,
469
+ "learning_rate": 2.5792682926829267e-05,
470
+ "loss": 1.9002,
471
+ "step": 77
472
+ },
473
+ {
474
+ "epoch": 1.81,
475
+ "learning_rate": 2.573170731707317e-05,
476
+ "loss": 1.9697,
477
+ "step": 78
478
+ },
479
+ {
480
+ "epoch": 1.83,
481
+ "learning_rate": 2.5670731707317075e-05,
482
+ "loss": 1.8974,
483
+ "step": 79
484
+ },
485
+ {
486
+ "epoch": 1.86,
487
+ "learning_rate": 2.5609756097560977e-05,
488
+ "loss": 1.9521,
489
+ "step": 80
490
+ },
491
+ {
492
+ "epoch": 1.88,
493
+ "learning_rate": 2.554878048780488e-05,
494
+ "loss": 1.9044,
495
+ "step": 81
496
+ },
497
+ {
498
+ "epoch": 1.9,
499
+ "learning_rate": 2.548780487804878e-05,
500
+ "loss": 1.9168,
501
+ "step": 82
502
+ },
503
+ {
504
+ "epoch": 1.92,
505
+ "learning_rate": 2.5426829268292683e-05,
506
+ "loss": 1.9546,
507
+ "step": 83
508
+ },
509
+ {
510
+ "epoch": 1.95,
511
+ "learning_rate": 2.536585365853659e-05,
512
+ "loss": 1.9659,
513
+ "step": 84
514
+ },
515
+ {
516
+ "epoch": 1.97,
517
+ "learning_rate": 2.5304878048780487e-05,
518
+ "loss": 1.9973,
519
+ "step": 85
520
+ },
521
+ {
522
+ "epoch": 1.99,
523
+ "learning_rate": 2.524390243902439e-05,
524
+ "loss": 1.9115,
525
+ "step": 86
526
+ },
527
+ {
528
+ "epoch": 2.02,
529
+ "learning_rate": 2.5182926829268295e-05,
530
+ "loss": 1.9176,
531
+ "step": 87
532
+ },
533
+ {
534
+ "epoch": 2.04,
535
+ "learning_rate": 2.5121951219512197e-05,
536
+ "loss": 1.8841,
537
+ "step": 88
538
+ },
539
+ {
540
+ "epoch": 2.06,
541
+ "learning_rate": 2.5060975609756096e-05,
542
+ "loss": 1.9046,
543
+ "step": 89
544
+ },
545
+ {
546
+ "epoch": 2.09,
547
+ "learning_rate": 2.5e-05,
548
+ "loss": 1.8913,
549
+ "step": 90
550
+ },
551
+ {
552
+ "epoch": 2.11,
553
+ "learning_rate": 2.4939024390243903e-05,
554
+ "loss": 1.8652,
555
+ "step": 91
556
+ },
557
+ {
558
+ "epoch": 2.13,
559
+ "learning_rate": 2.4878048780487805e-05,
560
+ "loss": 1.9712,
561
+ "step": 92
562
+ },
563
+ {
564
+ "epoch": 2.16,
565
+ "learning_rate": 2.4817073170731708e-05,
566
+ "loss": 1.8976,
567
+ "step": 93
568
+ },
569
+ {
570
+ "epoch": 2.18,
571
+ "learning_rate": 2.475609756097561e-05,
572
+ "loss": 1.8578,
573
+ "step": 94
574
+ },
575
+ {
576
+ "epoch": 2.2,
577
+ "learning_rate": 2.4695121951219512e-05,
578
+ "loss": 1.892,
579
+ "step": 95
580
+ },
581
+ {
582
+ "epoch": 2.23,
583
+ "learning_rate": 2.4634146341463417e-05,
584
+ "loss": 1.8431,
585
+ "step": 96
586
+ },
587
+ {
588
+ "epoch": 2.25,
589
+ "learning_rate": 2.4573170731707316e-05,
590
+ "loss": 1.9123,
591
+ "step": 97
592
+ },
593
+ {
594
+ "epoch": 2.27,
595
+ "learning_rate": 2.4512195121951218e-05,
596
+ "loss": 1.9426,
597
+ "step": 98
598
+ },
599
+ {
600
+ "epoch": 2.3,
601
+ "learning_rate": 2.4451219512195124e-05,
602
+ "loss": 1.9891,
603
+ "step": 99
604
+ },
605
+ {
606
+ "epoch": 2.32,
607
+ "learning_rate": 2.4390243902439026e-05,
608
+ "loss": 1.878,
609
+ "step": 100
610
+ },
611
+ {
612
+ "epoch": 2.34,
613
+ "learning_rate": 2.4329268292682928e-05,
614
+ "loss": 1.9455,
615
+ "step": 101
616
+ },
617
+ {
618
+ "epoch": 2.37,
619
+ "learning_rate": 2.426829268292683e-05,
620
+ "loss": 1.8838,
621
+ "step": 102
622
+ },
623
+ {
624
+ "epoch": 2.39,
625
+ "learning_rate": 2.4207317073170732e-05,
626
+ "loss": 1.8222,
627
+ "step": 103
628
+ },
629
+ {
630
+ "epoch": 2.41,
631
+ "learning_rate": 2.4146341463414638e-05,
632
+ "loss": 1.9379,
633
+ "step": 104
634
+ },
635
+ {
636
+ "epoch": 2.43,
637
+ "learning_rate": 2.4085365853658536e-05,
638
+ "loss": 1.8979,
639
+ "step": 105
640
+ },
641
+ {
642
+ "epoch": 2.46,
643
+ "learning_rate": 2.402439024390244e-05,
644
+ "loss": 1.9112,
645
+ "step": 106
646
+ },
647
+ {
648
+ "epoch": 2.48,
649
+ "learning_rate": 2.3963414634146344e-05,
650
+ "loss": 1.8726,
651
+ "step": 107
652
+ },
653
+ {
654
+ "epoch": 2.5,
655
+ "learning_rate": 2.3902439024390246e-05,
656
+ "loss": 1.952,
657
+ "step": 108
658
+ },
659
+ {
660
+ "epoch": 2.53,
661
+ "learning_rate": 2.3841463414634145e-05,
662
+ "loss": 1.8966,
663
+ "step": 109
664
+ },
665
+ {
666
+ "epoch": 2.55,
667
+ "learning_rate": 2.378048780487805e-05,
668
+ "loss": 1.951,
669
+ "step": 110
670
+ },
671
+ {
672
+ "epoch": 2.57,
673
+ "learning_rate": 2.3719512195121952e-05,
674
+ "loss": 1.9121,
675
+ "step": 111
676
+ },
677
+ {
678
+ "epoch": 2.6,
679
+ "learning_rate": 2.3658536585365854e-05,
680
+ "loss": 1.8444,
681
+ "step": 112
682
+ },
683
+ {
684
+ "epoch": 2.62,
685
+ "learning_rate": 2.3597560975609757e-05,
686
+ "loss": 1.8815,
687
+ "step": 113
688
+ },
689
+ {
690
+ "epoch": 2.64,
691
+ "learning_rate": 2.353658536585366e-05,
692
+ "loss": 1.9449,
693
+ "step": 114
694
+ },
695
+ {
696
+ "epoch": 2.67,
697
+ "learning_rate": 2.347560975609756e-05,
698
+ "loss": 1.9857,
699
+ "step": 115
700
+ },
701
+ {
702
+ "epoch": 2.69,
703
+ "learning_rate": 2.3414634146341466e-05,
704
+ "loss": 1.8547,
705
+ "step": 116
706
+ },
707
+ {
708
+ "epoch": 2.71,
709
+ "learning_rate": 2.3353658536585365e-05,
710
+ "loss": 1.9372,
711
+ "step": 117
712
+ },
713
+ {
714
+ "epoch": 2.74,
715
+ "learning_rate": 2.3292682926829267e-05,
716
+ "loss": 1.8957,
717
+ "step": 118
718
+ },
719
+ {
720
+ "epoch": 2.76,
721
+ "learning_rate": 2.3231707317073173e-05,
722
+ "loss": 1.8939,
723
+ "step": 119
724
+ },
725
+ {
726
+ "epoch": 2.78,
727
+ "learning_rate": 2.3170731707317075e-05,
728
+ "loss": 1.9126,
729
+ "step": 120
730
+ },
731
+ {
732
+ "epoch": 2.81,
733
+ "learning_rate": 2.3109756097560977e-05,
734
+ "loss": 1.9055,
735
+ "step": 121
736
+ },
737
+ {
738
+ "epoch": 2.83,
739
+ "learning_rate": 2.304878048780488e-05,
740
+ "loss": 1.8628,
741
+ "step": 122
742
+ },
743
+ {
744
+ "epoch": 2.85,
745
+ "learning_rate": 2.298780487804878e-05,
746
+ "loss": 1.9196,
747
+ "step": 123
748
+ },
749
+ {
750
+ "epoch": 2.88,
751
+ "learning_rate": 2.2926829268292687e-05,
752
+ "loss": 1.9766,
753
+ "step": 124
754
+ },
755
+ {
756
+ "epoch": 2.9,
757
+ "learning_rate": 2.2865853658536585e-05,
758
+ "loss": 1.9367,
759
+ "step": 125
760
+ },
761
+ {
762
+ "epoch": 2.92,
763
+ "learning_rate": 2.2804878048780487e-05,
764
+ "loss": 1.8564,
765
+ "step": 126
766
+ },
767
+ {
768
+ "epoch": 2.94,
769
+ "learning_rate": 2.2743902439024393e-05,
770
+ "loss": 1.9548,
771
+ "step": 127
772
+ },
773
+ {
774
+ "epoch": 2.97,
775
+ "learning_rate": 2.2682926829268295e-05,
776
+ "loss": 1.8375,
777
+ "step": 128
778
+ },
779
+ {
780
+ "epoch": 2.99,
781
+ "learning_rate": 2.2621951219512194e-05,
782
+ "loss": 1.8987,
783
+ "step": 129
784
+ },
785
+ {
786
+ "epoch": 3.01,
787
+ "learning_rate": 2.25609756097561e-05,
788
+ "loss": 1.8881,
789
+ "step": 130
790
+ },
791
+ {
792
+ "epoch": 3.04,
793
+ "learning_rate": 2.25e-05,
794
+ "loss": 1.8478,
795
+ "step": 131
796
+ },
797
+ {
798
+ "epoch": 3.06,
799
+ "learning_rate": 2.2439024390243904e-05,
800
+ "loss": 1.9343,
801
+ "step": 132
802
+ },
803
+ {
804
+ "epoch": 3.08,
805
+ "learning_rate": 2.2378048780487806e-05,
806
+ "loss": 1.9425,
807
+ "step": 133
808
+ },
809
+ {
810
+ "epoch": 3.11,
811
+ "learning_rate": 2.2317073170731708e-05,
812
+ "loss": 1.8641,
813
+ "step": 134
814
+ },
815
+ {
816
+ "epoch": 3.13,
817
+ "learning_rate": 2.225609756097561e-05,
818
+ "loss": 1.8896,
819
+ "step": 135
820
+ },
821
+ {
822
+ "epoch": 3.15,
823
+ "learning_rate": 2.2195121951219512e-05,
824
+ "loss": 1.8852,
825
+ "step": 136
826
+ },
827
+ {
828
+ "epoch": 3.18,
829
+ "learning_rate": 2.2134146341463414e-05,
830
+ "loss": 1.8599,
831
+ "step": 137
832
+ },
833
+ {
834
+ "epoch": 3.2,
835
+ "learning_rate": 2.2073170731707316e-05,
836
+ "loss": 1.916,
837
+ "step": 138
838
+ },
839
+ {
840
+ "epoch": 3.22,
841
+ "learning_rate": 2.2012195121951222e-05,
842
+ "loss": 1.9417,
843
+ "step": 139
844
+ },
845
+ {
846
+ "epoch": 3.25,
847
+ "learning_rate": 2.195121951219512e-05,
848
+ "loss": 1.916,
849
+ "step": 140
850
+ },
851
+ {
852
+ "epoch": 3.27,
853
+ "learning_rate": 2.1890243902439023e-05,
854
+ "loss": 1.7946,
855
+ "step": 141
856
+ },
857
+ {
858
+ "epoch": 3.29,
859
+ "learning_rate": 2.1829268292682928e-05,
860
+ "loss": 1.8801,
861
+ "step": 142
862
+ },
863
+ {
864
+ "epoch": 3.32,
865
+ "learning_rate": 2.176829268292683e-05,
866
+ "loss": 1.9045,
867
+ "step": 143
868
+ },
869
+ {
870
+ "epoch": 3.34,
871
+ "learning_rate": 2.1707317073170732e-05,
872
+ "loss": 1.9059,
873
+ "step": 144
874
+ },
875
+ {
876
+ "epoch": 3.36,
877
+ "learning_rate": 2.1646341463414634e-05,
878
+ "loss": 1.8927,
879
+ "step": 145
880
+ },
881
+ {
882
+ "epoch": 3.39,
883
+ "learning_rate": 2.1585365853658537e-05,
884
+ "loss": 2.0249,
885
+ "step": 146
886
+ },
887
+ {
888
+ "epoch": 3.41,
889
+ "learning_rate": 2.1524390243902442e-05,
890
+ "loss": 1.8718,
891
+ "step": 147
892
+ },
893
+ {
894
+ "epoch": 3.43,
895
+ "learning_rate": 2.146341463414634e-05,
896
+ "loss": 1.9046,
897
+ "step": 148
898
+ },
899
+ {
900
+ "epoch": 3.46,
901
+ "learning_rate": 2.1402439024390243e-05,
902
+ "loss": 1.9481,
903
+ "step": 149
904
+ },
905
+ {
906
+ "epoch": 3.48,
907
+ "learning_rate": 2.134146341463415e-05,
908
+ "loss": 1.8769,
909
+ "step": 150
910
+ },
911
+ {
912
+ "epoch": 3.5,
913
+ "learning_rate": 2.128048780487805e-05,
914
+ "loss": 1.753,
915
+ "step": 151
916
+ },
917
+ {
918
+ "epoch": 3.52,
919
+ "learning_rate": 2.121951219512195e-05,
920
+ "loss": 1.9065,
921
+ "step": 152
922
+ },
923
+ {
924
+ "epoch": 3.55,
925
+ "learning_rate": 2.1158536585365855e-05,
926
+ "loss": 1.947,
927
+ "step": 153
928
+ },
929
+ {
930
+ "epoch": 3.57,
931
+ "learning_rate": 2.1097560975609757e-05,
932
+ "loss": 1.9284,
933
+ "step": 154
934
+ },
935
+ {
936
+ "epoch": 3.59,
937
+ "learning_rate": 2.103658536585366e-05,
938
+ "loss": 1.8341,
939
+ "step": 155
940
+ },
941
+ {
942
+ "epoch": 3.62,
943
+ "learning_rate": 2.097560975609756e-05,
944
+ "loss": 1.8711,
945
+ "step": 156
946
+ },
947
+ {
948
+ "epoch": 3.64,
949
+ "learning_rate": 2.0914634146341463e-05,
950
+ "loss": 1.8183,
951
+ "step": 157
952
+ },
953
+ {
954
+ "epoch": 3.66,
955
+ "learning_rate": 2.0853658536585365e-05,
956
+ "loss": 1.8935,
957
+ "step": 158
958
+ },
959
+ {
960
+ "epoch": 3.69,
961
+ "learning_rate": 2.079268292682927e-05,
962
+ "loss": 1.8397,
963
+ "step": 159
964
+ },
965
+ {
966
+ "epoch": 3.71,
967
+ "learning_rate": 2.073170731707317e-05,
968
+ "loss": 1.8481,
969
+ "step": 160
970
+ },
971
+ {
972
+ "epoch": 3.73,
973
+ "learning_rate": 2.067073170731707e-05,
974
+ "loss": 1.8134,
975
+ "step": 161
976
+ },
977
+ {
978
+ "epoch": 3.76,
979
+ "learning_rate": 2.0609756097560977e-05,
980
+ "loss": 1.9221,
981
+ "step": 162
982
+ },
983
+ {
984
+ "epoch": 3.78,
985
+ "learning_rate": 2.054878048780488e-05,
986
+ "loss": 1.8334,
987
+ "step": 163
988
+ },
989
+ {
990
+ "epoch": 3.8,
991
+ "learning_rate": 2.048780487804878e-05,
992
+ "loss": 1.899,
993
+ "step": 164
994
+ },
995
+ {
996
+ "epoch": 3.83,
997
+ "learning_rate": 2.0426829268292683e-05,
998
+ "loss": 1.8769,
999
+ "step": 165
1000
+ },
1001
+ {
1002
+ "epoch": 3.85,
1003
+ "learning_rate": 2.0365853658536586e-05,
1004
+ "loss": 1.8427,
1005
+ "step": 166
1006
+ },
1007
+ {
1008
+ "epoch": 3.87,
1009
+ "learning_rate": 2.030487804878049e-05,
1010
+ "loss": 1.8423,
1011
+ "step": 167
1012
+ },
1013
+ {
1014
+ "epoch": 3.9,
1015
+ "learning_rate": 2.024390243902439e-05,
1016
+ "loss": 1.9441,
1017
+ "step": 168
1018
+ },
1019
+ {
1020
+ "epoch": 3.92,
1021
+ "learning_rate": 2.0182926829268292e-05,
1022
+ "loss": 1.7726,
1023
+ "step": 169
1024
+ },
1025
+ {
1026
+ "epoch": 3.94,
1027
+ "learning_rate": 2.0121951219512197e-05,
1028
+ "loss": 1.8858,
1029
+ "step": 170
1030
+ },
1031
+ {
1032
+ "epoch": 3.97,
1033
+ "learning_rate": 2.00609756097561e-05,
1034
+ "loss": 1.8227,
1035
+ "step": 171
1036
+ },
1037
+ {
1038
+ "epoch": 3.99,
1039
+ "learning_rate": 1.9999999999999998e-05,
1040
+ "loss": 1.8622,
1041
+ "step": 172
1042
+ },
1043
+ {
1044
+ "epoch": 4.01,
1045
+ "learning_rate": 1.9939024390243904e-05,
1046
+ "loss": 1.8685,
1047
+ "step": 173
1048
+ },
1049
+ {
1050
+ "epoch": 4.03,
1051
+ "learning_rate": 1.9878048780487806e-05,
1052
+ "loss": 1.92,
1053
+ "step": 174
1054
+ },
1055
+ {
1056
+ "epoch": 4.06,
1057
+ "learning_rate": 1.9817073170731708e-05,
1058
+ "loss": 1.925,
1059
+ "step": 175
1060
+ },
1061
+ {
1062
+ "epoch": 4.08,
1063
+ "learning_rate": 1.975609756097561e-05,
1064
+ "loss": 1.8486,
1065
+ "step": 176
1066
+ },
1067
+ {
1068
+ "epoch": 4.1,
1069
+ "learning_rate": 1.9695121951219512e-05,
1070
+ "loss": 1.8687,
1071
+ "step": 177
1072
+ },
1073
+ {
1074
+ "epoch": 4.13,
1075
+ "learning_rate": 1.9634146341463414e-05,
1076
+ "loss": 1.8679,
1077
+ "step": 178
1078
+ },
1079
+ {
1080
+ "epoch": 4.15,
1081
+ "learning_rate": 1.957317073170732e-05,
1082
+ "loss": 1.8379,
1083
+ "step": 179
1084
+ },
1085
+ {
1086
+ "epoch": 4.17,
1087
+ "learning_rate": 1.951219512195122e-05,
1088
+ "loss": 1.8829,
1089
+ "step": 180
1090
+ },
1091
+ {
1092
+ "epoch": 4.2,
1093
+ "learning_rate": 1.945121951219512e-05,
1094
+ "loss": 1.924,
1095
+ "step": 181
1096
+ },
1097
+ {
1098
+ "epoch": 4.22,
1099
+ "learning_rate": 1.9390243902439026e-05,
1100
+ "loss": 1.9461,
1101
+ "step": 182
1102
+ },
1103
+ {
1104
+ "epoch": 4.24,
1105
+ "learning_rate": 1.9329268292682928e-05,
1106
+ "loss": 1.8702,
1107
+ "step": 183
1108
+ },
1109
+ {
1110
+ "epoch": 4.27,
1111
+ "learning_rate": 1.926829268292683e-05,
1112
+ "loss": 1.8518,
1113
+ "step": 184
1114
+ },
1115
+ {
1116
+ "epoch": 4.29,
1117
+ "learning_rate": 1.9207317073170733e-05,
1118
+ "loss": 1.9101,
1119
+ "step": 185
1120
+ },
1121
+ {
1122
+ "epoch": 4.31,
1123
+ "learning_rate": 1.9146341463414635e-05,
1124
+ "loss": 1.7935,
1125
+ "step": 186
1126
+ },
1127
+ {
1128
+ "epoch": 4.34,
1129
+ "learning_rate": 1.908536585365854e-05,
1130
+ "loss": 1.8736,
1131
+ "step": 187
1132
+ },
1133
+ {
1134
+ "epoch": 4.36,
1135
+ "learning_rate": 1.902439024390244e-05,
1136
+ "loss": 1.8667,
1137
+ "step": 188
1138
+ },
1139
+ {
1140
+ "epoch": 4.38,
1141
+ "learning_rate": 1.896341463414634e-05,
1142
+ "loss": 1.8707,
1143
+ "step": 189
1144
+ },
1145
+ {
1146
+ "epoch": 4.41,
1147
+ "learning_rate": 1.8902439024390246e-05,
1148
+ "loss": 1.9036,
1149
+ "step": 190
1150
+ },
1151
+ {
1152
+ "epoch": 4.43,
1153
+ "learning_rate": 1.884146341463415e-05,
1154
+ "loss": 1.7947,
1155
+ "step": 191
1156
+ },
1157
+ {
1158
+ "epoch": 4.45,
1159
+ "learning_rate": 1.8780487804878047e-05,
1160
+ "loss": 1.8098,
1161
+ "step": 192
1162
+ },
1163
+ {
1164
+ "epoch": 4.48,
1165
+ "learning_rate": 1.8719512195121953e-05,
1166
+ "loss": 1.8323,
1167
+ "step": 193
1168
+ },
1169
+ {
1170
+ "epoch": 4.5,
1171
+ "learning_rate": 1.8658536585365855e-05,
1172
+ "loss": 1.8219,
1173
+ "step": 194
1174
+ },
1175
+ {
1176
+ "epoch": 4.52,
1177
+ "learning_rate": 1.8597560975609754e-05,
1178
+ "loss": 1.8358,
1179
+ "step": 195
1180
+ },
1181
+ {
1182
+ "epoch": 4.54,
1183
+ "learning_rate": 1.853658536585366e-05,
1184
+ "loss": 1.873,
1185
+ "step": 196
1186
+ },
1187
+ {
1188
+ "epoch": 4.57,
1189
+ "learning_rate": 1.847560975609756e-05,
1190
+ "loss": 1.8871,
1191
+ "step": 197
1192
+ },
1193
+ {
1194
+ "epoch": 4.59,
1195
+ "learning_rate": 1.8414634146341463e-05,
1196
+ "loss": 1.8926,
1197
+ "step": 198
1198
+ },
1199
+ {
1200
+ "epoch": 4.61,
1201
+ "learning_rate": 1.8353658536585365e-05,
1202
+ "loss": 1.8976,
1203
+ "step": 199
1204
+ },
1205
+ {
1206
+ "epoch": 4.64,
1207
+ "learning_rate": 1.8292682926829268e-05,
1208
+ "loss": 1.8112,
1209
+ "step": 200
1210
+ },
1211
+ {
1212
+ "epoch": 4.66,
1213
+ "learning_rate": 1.823170731707317e-05,
1214
+ "loss": 1.8891,
1215
+ "step": 201
1216
+ },
1217
+ {
1218
+ "epoch": 4.68,
1219
+ "learning_rate": 1.8170731707317075e-05,
1220
+ "loss": 1.8788,
1221
+ "step": 202
1222
+ },
1223
+ {
1224
+ "epoch": 4.71,
1225
+ "learning_rate": 1.8109756097560974e-05,
1226
+ "loss": 1.787,
1227
+ "step": 203
1228
+ },
1229
+ {
1230
+ "epoch": 4.73,
1231
+ "learning_rate": 1.804878048780488e-05,
1232
+ "loss": 1.8208,
1233
+ "step": 204
1234
+ },
1235
+ {
1236
+ "epoch": 4.75,
1237
+ "learning_rate": 1.798780487804878e-05,
1238
+ "loss": 1.9106,
1239
+ "step": 205
1240
+ },
1241
+ {
1242
+ "epoch": 4.78,
1243
+ "learning_rate": 1.7926829268292684e-05,
1244
+ "loss": 1.8922,
1245
+ "step": 206
1246
+ },
1247
+ {
1248
+ "epoch": 4.8,
1249
+ "learning_rate": 1.7865853658536586e-05,
1250
+ "loss": 1.9014,
1251
+ "step": 207
1252
+ },
1253
+ {
1254
+ "epoch": 4.82,
1255
+ "learning_rate": 1.7804878048780488e-05,
1256
+ "loss": 1.8015,
1257
+ "step": 208
1258
+ },
1259
+ {
1260
+ "epoch": 4.85,
1261
+ "learning_rate": 1.774390243902439e-05,
1262
+ "loss": 1.8836,
1263
+ "step": 209
1264
+ },
1265
+ {
1266
+ "epoch": 4.87,
1267
+ "learning_rate": 1.7682926829268296e-05,
1268
+ "loss": 1.8423,
1269
+ "step": 210
1270
+ },
1271
+ {
1272
+ "epoch": 4.89,
1273
+ "learning_rate": 1.7621951219512194e-05,
1274
+ "loss": 1.8525,
1275
+ "step": 211
1276
+ },
1277
+ {
1278
+ "epoch": 4.92,
1279
+ "learning_rate": 1.7560975609756096e-05,
1280
+ "loss": 1.8726,
1281
+ "step": 212
1282
+ },
1283
+ {
1284
+ "epoch": 4.94,
1285
+ "learning_rate": 1.7500000000000002e-05,
1286
+ "loss": 1.8582,
1287
+ "step": 213
1288
+ },
1289
+ {
1290
+ "epoch": 4.96,
1291
+ "learning_rate": 1.7439024390243904e-05,
1292
+ "loss": 1.8846,
1293
+ "step": 214
1294
+ },
1295
+ {
1296
+ "epoch": 4.99,
1297
+ "learning_rate": 1.7378048780487803e-05,
1298
+ "loss": 1.8683,
1299
+ "step": 215
1300
+ },
1301
+ {
1302
+ "epoch": 5.01,
1303
+ "learning_rate": 1.7317073170731708e-05,
1304
+ "loss": 1.8713,
1305
+ "step": 216
1306
+ },
1307
+ {
1308
+ "epoch": 5.03,
1309
+ "learning_rate": 1.725609756097561e-05,
1310
+ "loss": 1.8359,
1311
+ "step": 217
1312
+ },
1313
+ {
1314
+ "epoch": 5.06,
1315
+ "learning_rate": 1.7195121951219512e-05,
1316
+ "loss": 1.8415,
1317
+ "step": 218
1318
+ },
1319
+ {
1320
+ "epoch": 5.08,
1321
+ "learning_rate": 1.7134146341463415e-05,
1322
+ "loss": 1.9431,
1323
+ "step": 219
1324
+ },
1325
+ {
1326
+ "epoch": 5.1,
1327
+ "learning_rate": 1.7073170731707317e-05,
1328
+ "loss": 1.8503,
1329
+ "step": 220
1330
+ },
1331
+ {
1332
+ "epoch": 5.12,
1333
+ "learning_rate": 1.701219512195122e-05,
1334
+ "loss": 1.8799,
1335
+ "step": 221
1336
+ },
1337
+ {
1338
+ "epoch": 5.15,
1339
+ "learning_rate": 1.6951219512195124e-05,
1340
+ "loss": 1.8415,
1341
+ "step": 222
1342
+ },
1343
+ {
1344
+ "epoch": 5.17,
1345
+ "learning_rate": 1.6890243902439023e-05,
1346
+ "loss": 1.8431,
1347
+ "step": 223
1348
+ },
1349
+ {
1350
+ "epoch": 5.19,
1351
+ "learning_rate": 1.682926829268293e-05,
1352
+ "loss": 1.8891,
1353
+ "step": 224
1354
+ },
1355
+ {
1356
+ "epoch": 5.22,
1357
+ "learning_rate": 1.676829268292683e-05,
1358
+ "loss": 1.8438,
1359
+ "step": 225
1360
+ },
1361
+ {
1362
+ "epoch": 5.24,
1363
+ "learning_rate": 1.6707317073170733e-05,
1364
+ "loss": 1.9094,
1365
+ "step": 226
1366
+ },
1367
+ {
1368
+ "epoch": 5.26,
1369
+ "learning_rate": 1.6646341463414635e-05,
1370
+ "loss": 1.8045,
1371
+ "step": 227
1372
+ },
1373
+ {
1374
+ "epoch": 5.29,
1375
+ "learning_rate": 1.6585365853658537e-05,
1376
+ "loss": 1.9617,
1377
+ "step": 228
1378
+ },
1379
+ {
1380
+ "epoch": 5.31,
1381
+ "learning_rate": 1.652439024390244e-05,
1382
+ "loss": 1.8788,
1383
+ "step": 229
1384
+ },
1385
+ {
1386
+ "epoch": 5.33,
1387
+ "learning_rate": 1.6463414634146345e-05,
1388
+ "loss": 1.8641,
1389
+ "step": 230
1390
+ },
1391
+ {
1392
+ "epoch": 5.36,
1393
+ "learning_rate": 1.6402439024390243e-05,
1394
+ "loss": 1.8191,
1395
+ "step": 231
1396
+ },
1397
+ {
1398
+ "epoch": 5.38,
1399
+ "learning_rate": 1.6341463414634145e-05,
1400
+ "loss": 1.8844,
1401
+ "step": 232
1402
+ },
1403
+ {
1404
+ "epoch": 5.4,
1405
+ "learning_rate": 1.628048780487805e-05,
1406
+ "loss": 1.8835,
1407
+ "step": 233
1408
+ },
1409
+ {
1410
+ "epoch": 5.43,
1411
+ "learning_rate": 1.6219512195121953e-05,
1412
+ "loss": 1.8899,
1413
+ "step": 234
1414
+ },
1415
+ {
1416
+ "epoch": 5.45,
1417
+ "learning_rate": 1.6158536585365852e-05,
1418
+ "loss": 1.7983,
1419
+ "step": 235
1420
+ },
1421
+ {
1422
+ "epoch": 5.47,
1423
+ "learning_rate": 1.6097560975609757e-05,
1424
+ "loss": 1.8025,
1425
+ "step": 236
1426
+ },
1427
+ {
1428
+ "epoch": 5.5,
1429
+ "learning_rate": 1.603658536585366e-05,
1430
+ "loss": 1.8975,
1431
+ "step": 237
1432
+ },
1433
+ {
1434
+ "epoch": 5.52,
1435
+ "learning_rate": 1.597560975609756e-05,
1436
+ "loss": 1.817,
1437
+ "step": 238
1438
+ },
1439
+ {
1440
+ "epoch": 5.54,
1441
+ "learning_rate": 1.5914634146341464e-05,
1442
+ "loss": 1.768,
1443
+ "step": 239
1444
+ },
1445
+ {
1446
+ "epoch": 5.57,
1447
+ "learning_rate": 1.5853658536585366e-05,
1448
+ "loss": 1.8033,
1449
+ "step": 240
1450
+ },
1451
+ {
1452
+ "epoch": 5.59,
1453
+ "learning_rate": 1.5792682926829268e-05,
1454
+ "loss": 1.8734,
1455
+ "step": 241
1456
+ },
1457
+ {
1458
+ "epoch": 5.61,
1459
+ "learning_rate": 1.5731707317073173e-05,
1460
+ "loss": 1.8962,
1461
+ "step": 242
1462
+ },
1463
+ {
1464
+ "epoch": 5.63,
1465
+ "learning_rate": 1.5670731707317072e-05,
1466
+ "loss": 1.8442,
1467
+ "step": 243
1468
+ },
1469
+ {
1470
+ "epoch": 5.66,
1471
+ "learning_rate": 1.5609756097560978e-05,
1472
+ "loss": 1.8266,
1473
+ "step": 244
1474
+ },
1475
+ {
1476
+ "epoch": 5.68,
1477
+ "learning_rate": 1.554878048780488e-05,
1478
+ "loss": 1.8717,
1479
+ "step": 245
1480
+ },
1481
+ {
1482
+ "epoch": 5.7,
1483
+ "learning_rate": 1.5487804878048782e-05,
1484
+ "loss": 1.9014,
1485
+ "step": 246
1486
+ },
1487
+ {
1488
+ "epoch": 5.73,
1489
+ "learning_rate": 1.5426829268292684e-05,
1490
+ "loss": 1.8647,
1491
+ "step": 247
1492
+ },
1493
+ {
1494
+ "epoch": 5.75,
1495
+ "learning_rate": 1.5365853658536586e-05,
1496
+ "loss": 1.8806,
1497
+ "step": 248
1498
+ },
1499
+ {
1500
+ "epoch": 5.77,
1501
+ "learning_rate": 1.5304878048780488e-05,
1502
+ "loss": 1.8166,
1503
+ "step": 249
1504
+ },
1505
+ {
1506
+ "epoch": 5.8,
1507
+ "learning_rate": 1.5243902439024392e-05,
1508
+ "loss": 1.8547,
1509
+ "step": 250
1510
+ },
1511
+ {
1512
+ "epoch": 5.82,
1513
+ "learning_rate": 1.5182926829268294e-05,
1514
+ "loss": 1.855,
1515
+ "step": 251
1516
+ },
1517
+ {
1518
+ "epoch": 5.84,
1519
+ "learning_rate": 1.5121951219512194e-05,
1520
+ "loss": 1.8207,
1521
+ "step": 252
1522
+ },
1523
+ {
1524
+ "epoch": 5.87,
1525
+ "learning_rate": 1.5060975609756098e-05,
1526
+ "loss": 1.8739,
1527
+ "step": 253
1528
+ },
1529
+ {
1530
+ "epoch": 5.89,
1531
+ "learning_rate": 1.5e-05,
1532
+ "loss": 1.9057,
1533
+ "step": 254
1534
+ },
1535
+ {
1536
+ "epoch": 5.91,
1537
+ "learning_rate": 1.4939024390243902e-05,
1538
+ "loss": 1.8652,
1539
+ "step": 255
1540
+ },
1541
+ {
1542
+ "epoch": 5.94,
1543
+ "learning_rate": 1.4878048780487805e-05,
1544
+ "loss": 1.8042,
1545
+ "step": 256
1546
+ },
1547
+ {
1548
+ "epoch": 5.96,
1549
+ "learning_rate": 1.4817073170731707e-05,
1550
+ "loss": 1.8646,
1551
+ "step": 257
1552
+ },
1553
+ {
1554
+ "epoch": 5.98,
1555
+ "learning_rate": 1.475609756097561e-05,
1556
+ "loss": 1.7727,
1557
+ "step": 258
1558
+ },
1559
+ {
1560
+ "epoch": 6.01,
1561
+ "learning_rate": 1.4695121951219511e-05,
1562
+ "loss": 1.8401,
1563
+ "step": 259
1564
+ },
1565
+ {
1566
+ "epoch": 6.03,
1567
+ "learning_rate": 1.4634146341463415e-05,
1568
+ "loss": 1.8323,
1569
+ "step": 260
1570
+ },
1571
+ {
1572
+ "epoch": 6.05,
1573
+ "learning_rate": 1.4573170731707317e-05,
1574
+ "loss": 1.798,
1575
+ "step": 261
1576
+ },
1577
+ {
1578
+ "epoch": 6.08,
1579
+ "learning_rate": 1.451219512195122e-05,
1580
+ "loss": 1.8498,
1581
+ "step": 262
1582
+ },
1583
+ {
1584
+ "epoch": 6.1,
1585
+ "learning_rate": 1.4451219512195121e-05,
1586
+ "loss": 1.8613,
1587
+ "step": 263
1588
+ },
1589
+ {
1590
+ "epoch": 6.12,
1591
+ "learning_rate": 1.4390243902439025e-05,
1592
+ "loss": 1.8581,
1593
+ "step": 264
1594
+ },
1595
+ {
1596
+ "epoch": 6.14,
1597
+ "learning_rate": 1.4329268292682927e-05,
1598
+ "loss": 1.8183,
1599
+ "step": 265
1600
+ },
1601
+ {
1602
+ "epoch": 6.17,
1603
+ "learning_rate": 1.4268292682926829e-05,
1604
+ "loss": 1.8341,
1605
+ "step": 266
1606
+ },
1607
+ {
1608
+ "epoch": 6.19,
1609
+ "learning_rate": 1.4207317073170731e-05,
1610
+ "loss": 1.8379,
1611
+ "step": 267
1612
+ },
1613
+ {
1614
+ "epoch": 6.21,
1615
+ "learning_rate": 1.4146341463414635e-05,
1616
+ "loss": 1.8602,
1617
+ "step": 268
1618
+ },
1619
+ {
1620
+ "epoch": 6.24,
1621
+ "learning_rate": 1.4085365853658535e-05,
1622
+ "loss": 1.8839,
1623
+ "step": 269
1624
+ },
1625
+ {
1626
+ "epoch": 6.26,
1627
+ "learning_rate": 1.402439024390244e-05,
1628
+ "loss": 1.8391,
1629
+ "step": 270
1630
+ },
1631
+ {
1632
+ "epoch": 6.28,
1633
+ "learning_rate": 1.3963414634146341e-05,
1634
+ "loss": 1.8329,
1635
+ "step": 271
1636
+ },
1637
+ {
1638
+ "epoch": 6.31,
1639
+ "learning_rate": 1.3902439024390245e-05,
1640
+ "loss": 1.8749,
1641
+ "step": 272
1642
+ },
1643
+ {
1644
+ "epoch": 6.33,
1645
+ "learning_rate": 1.3841463414634146e-05,
1646
+ "loss": 1.8137,
1647
+ "step": 273
1648
+ },
1649
+ {
1650
+ "epoch": 6.35,
1651
+ "learning_rate": 1.378048780487805e-05,
1652
+ "loss": 1.8471,
1653
+ "step": 274
1654
+ },
1655
+ {
1656
+ "epoch": 6.38,
1657
+ "learning_rate": 1.3719512195121952e-05,
1658
+ "loss": 1.8196,
1659
+ "step": 275
1660
+ },
1661
+ {
1662
+ "epoch": 6.4,
1663
+ "learning_rate": 1.3658536585365854e-05,
1664
+ "loss": 1.8122,
1665
+ "step": 276
1666
+ },
1667
+ {
1668
+ "epoch": 6.42,
1669
+ "learning_rate": 1.3597560975609756e-05,
1670
+ "loss": 1.827,
1671
+ "step": 277
1672
+ },
1673
+ {
1674
+ "epoch": 6.45,
1675
+ "learning_rate": 1.353658536585366e-05,
1676
+ "loss": 1.8483,
1677
+ "step": 278
1678
+ },
1679
+ {
1680
+ "epoch": 6.47,
1681
+ "learning_rate": 1.347560975609756e-05,
1682
+ "loss": 1.8586,
1683
+ "step": 279
1684
+ },
1685
+ {
1686
+ "epoch": 6.49,
1687
+ "learning_rate": 1.3414634146341464e-05,
1688
+ "loss": 1.8376,
1689
+ "step": 280
1690
+ },
1691
+ {
1692
+ "epoch": 6.52,
1693
+ "learning_rate": 1.3353658536585366e-05,
1694
+ "loss": 1.9202,
1695
+ "step": 281
1696
+ },
1697
+ {
1698
+ "epoch": 6.54,
1699
+ "learning_rate": 1.329268292682927e-05,
1700
+ "loss": 1.8513,
1701
+ "step": 282
1702
+ },
1703
+ {
1704
+ "epoch": 6.56,
1705
+ "learning_rate": 1.323170731707317e-05,
1706
+ "loss": 1.8526,
1707
+ "step": 283
1708
+ },
1709
+ {
1710
+ "epoch": 6.59,
1711
+ "learning_rate": 1.3170731707317074e-05,
1712
+ "loss": 1.8625,
1713
+ "step": 284
1714
+ },
1715
+ {
1716
+ "epoch": 6.61,
1717
+ "learning_rate": 1.3109756097560976e-05,
1718
+ "loss": 1.8891,
1719
+ "step": 285
1720
+ },
1721
+ {
1722
+ "epoch": 6.63,
1723
+ "learning_rate": 1.3048780487804878e-05,
1724
+ "loss": 1.8396,
1725
+ "step": 286
1726
+ },
1727
+ {
1728
+ "epoch": 6.66,
1729
+ "learning_rate": 1.298780487804878e-05,
1730
+ "loss": 1.8735,
1731
+ "step": 287
1732
+ },
1733
+ {
1734
+ "epoch": 6.68,
1735
+ "learning_rate": 1.2926829268292684e-05,
1736
+ "loss": 1.8588,
1737
+ "step": 288
1738
+ },
1739
+ {
1740
+ "epoch": 6.7,
1741
+ "learning_rate": 1.2865853658536585e-05,
1742
+ "loss": 1.8354,
1743
+ "step": 289
1744
+ },
1745
+ {
1746
+ "epoch": 6.72,
1747
+ "learning_rate": 1.2804878048780488e-05,
1748
+ "loss": 1.7961,
1749
+ "step": 290
1750
+ },
1751
+ {
1752
+ "epoch": 6.75,
1753
+ "learning_rate": 1.274390243902439e-05,
1754
+ "loss": 1.8739,
1755
+ "step": 291
1756
+ },
1757
+ {
1758
+ "epoch": 6.77,
1759
+ "learning_rate": 1.2682926829268294e-05,
1760
+ "loss": 1.755,
1761
+ "step": 292
1762
+ },
1763
+ {
1764
+ "epoch": 6.79,
1765
+ "learning_rate": 1.2621951219512195e-05,
1766
+ "loss": 1.819,
1767
+ "step": 293
1768
+ },
1769
+ {
1770
+ "epoch": 6.82,
1771
+ "learning_rate": 1.2560975609756098e-05,
1772
+ "loss": 1.873,
1773
+ "step": 294
1774
+ },
1775
+ {
1776
+ "epoch": 6.84,
1777
+ "learning_rate": 1.25e-05,
1778
+ "loss": 1.8856,
1779
+ "step": 295
1780
+ },
1781
+ {
1782
+ "epoch": 6.86,
1783
+ "learning_rate": 1.2439024390243903e-05,
1784
+ "loss": 1.7957,
1785
+ "step": 296
1786
+ },
1787
+ {
1788
+ "epoch": 6.89,
1789
+ "learning_rate": 1.2378048780487805e-05,
1790
+ "loss": 1.9105,
1791
+ "step": 297
1792
+ },
1793
+ {
1794
+ "epoch": 6.91,
1795
+ "learning_rate": 1.2317073170731709e-05,
1796
+ "loss": 1.9567,
1797
+ "step": 298
1798
+ },
1799
+ {
1800
+ "epoch": 6.93,
1801
+ "learning_rate": 1.2256097560975609e-05,
1802
+ "loss": 1.8302,
1803
+ "step": 299
1804
+ },
1805
+ {
1806
+ "epoch": 6.96,
1807
+ "learning_rate": 1.2195121951219513e-05,
1808
+ "loss": 1.8012,
1809
+ "step": 300
1810
+ },
1811
+ {
1812
+ "epoch": 6.98,
1813
+ "learning_rate": 1.2134146341463415e-05,
1814
+ "loss": 1.8738,
1815
+ "step": 301
1816
+ },
1817
+ {
1818
+ "epoch": 7.0,
1819
+ "learning_rate": 1.2073170731707319e-05,
1820
+ "loss": 1.8451,
1821
+ "step": 302
1822
+ },
1823
+ {
1824
+ "epoch": 7.03,
1825
+ "learning_rate": 1.201219512195122e-05,
1826
+ "loss": 1.8725,
1827
+ "step": 303
1828
+ },
1829
+ {
1830
+ "epoch": 7.05,
1831
+ "learning_rate": 1.1951219512195123e-05,
1832
+ "loss": 1.8076,
1833
+ "step": 304
1834
+ },
1835
+ {
1836
+ "epoch": 7.07,
1837
+ "learning_rate": 1.1890243902439025e-05,
1838
+ "loss": 1.8252,
1839
+ "step": 305
1840
+ },
1841
+ {
1842
+ "epoch": 7.1,
1843
+ "learning_rate": 1.1829268292682927e-05,
1844
+ "loss": 1.8556,
1845
+ "step": 306
1846
+ },
1847
+ {
1848
+ "epoch": 7.12,
1849
+ "learning_rate": 1.176829268292683e-05,
1850
+ "loss": 1.9182,
1851
+ "step": 307
1852
+ },
1853
+ {
1854
+ "epoch": 7.14,
1855
+ "learning_rate": 1.1707317073170733e-05,
1856
+ "loss": 1.8325,
1857
+ "step": 308
1858
+ },
1859
+ {
1860
+ "epoch": 7.17,
1861
+ "learning_rate": 1.1646341463414634e-05,
1862
+ "loss": 1.8132,
1863
+ "step": 309
1864
+ },
1865
+ {
1866
+ "epoch": 7.19,
1867
+ "learning_rate": 1.1585365853658537e-05,
1868
+ "loss": 1.8424,
1869
+ "step": 310
1870
+ },
1871
+ {
1872
+ "epoch": 7.21,
1873
+ "learning_rate": 1.152439024390244e-05,
1874
+ "loss": 1.8617,
1875
+ "step": 311
1876
+ },
1877
+ {
1878
+ "epoch": 7.23,
1879
+ "learning_rate": 1.1463414634146343e-05,
1880
+ "loss": 1.7966,
1881
+ "step": 312
1882
+ },
1883
+ {
1884
+ "epoch": 7.26,
1885
+ "learning_rate": 1.1402439024390244e-05,
1886
+ "loss": 1.8628,
1887
+ "step": 313
1888
+ },
1889
+ {
1890
+ "epoch": 7.28,
1891
+ "learning_rate": 1.1341463414634148e-05,
1892
+ "loss": 1.8711,
1893
+ "step": 314
1894
+ },
1895
+ {
1896
+ "epoch": 7.3,
1897
+ "learning_rate": 1.128048780487805e-05,
1898
+ "loss": 1.8142,
1899
+ "step": 315
1900
+ },
1901
+ {
1902
+ "epoch": 7.33,
1903
+ "learning_rate": 1.1219512195121952e-05,
1904
+ "loss": 1.8658,
1905
+ "step": 316
1906
+ },
1907
+ {
1908
+ "epoch": 7.35,
1909
+ "learning_rate": 1.1158536585365854e-05,
1910
+ "loss": 1.8233,
1911
+ "step": 317
1912
+ },
1913
+ {
1914
+ "epoch": 7.37,
1915
+ "learning_rate": 1.1097560975609756e-05,
1916
+ "loss": 1.8624,
1917
+ "step": 318
1918
+ },
1919
+ {
1920
+ "epoch": 7.4,
1921
+ "learning_rate": 1.1036585365853658e-05,
1922
+ "loss": 1.8298,
1923
+ "step": 319
1924
+ },
1925
+ {
1926
+ "epoch": 7.42,
1927
+ "learning_rate": 1.097560975609756e-05,
1928
+ "loss": 1.869,
1929
+ "step": 320
1930
+ },
1931
+ {
1932
+ "epoch": 7.44,
1933
+ "learning_rate": 1.0914634146341464e-05,
1934
+ "loss": 1.884,
1935
+ "step": 321
1936
+ },
1937
+ {
1938
+ "epoch": 7.47,
1939
+ "learning_rate": 1.0853658536585366e-05,
1940
+ "loss": 1.8007,
1941
+ "step": 322
1942
+ },
1943
+ {
1944
+ "epoch": 7.49,
1945
+ "learning_rate": 1.0792682926829268e-05,
1946
+ "loss": 1.8457,
1947
+ "step": 323
1948
+ },
1949
+ {
1950
+ "epoch": 7.51,
1951
+ "learning_rate": 1.073170731707317e-05,
1952
+ "loss": 1.8589,
1953
+ "step": 324
1954
+ },
1955
+ {
1956
+ "epoch": 7.54,
1957
+ "learning_rate": 1.0670731707317074e-05,
1958
+ "loss": 1.8211,
1959
+ "step": 325
1960
+ },
1961
+ {
1962
+ "epoch": 7.56,
1963
+ "learning_rate": 1.0609756097560975e-05,
1964
+ "loss": 1.8594,
1965
+ "step": 326
1966
+ },
1967
+ {
1968
+ "epoch": 7.58,
1969
+ "learning_rate": 1.0548780487804878e-05,
1970
+ "loss": 1.8588,
1971
+ "step": 327
1972
+ },
1973
+ {
1974
+ "epoch": 7.61,
1975
+ "learning_rate": 1.048780487804878e-05,
1976
+ "loss": 1.845,
1977
+ "step": 328
1978
+ },
1979
+ {
1980
+ "epoch": 7.63,
1981
+ "learning_rate": 1.0426829268292683e-05,
1982
+ "loss": 1.7974,
1983
+ "step": 329
1984
+ },
1985
+ {
1986
+ "epoch": 7.65,
1987
+ "learning_rate": 1.0365853658536585e-05,
1988
+ "loss": 1.8571,
1989
+ "step": 330
1990
+ },
1991
+ {
1992
+ "epoch": 7.68,
1993
+ "learning_rate": 1.0304878048780489e-05,
1994
+ "loss": 1.7917,
1995
+ "step": 331
1996
+ },
1997
+ {
1998
+ "epoch": 7.7,
1999
+ "learning_rate": 1.024390243902439e-05,
2000
+ "loss": 1.8581,
2001
+ "step": 332
2002
+ },
2003
+ {
2004
+ "epoch": 7.72,
2005
+ "learning_rate": 1.0182926829268293e-05,
2006
+ "loss": 1.8404,
2007
+ "step": 333
2008
+ },
2009
+ {
2010
+ "epoch": 7.74,
2011
+ "learning_rate": 1.0121951219512195e-05,
2012
+ "loss": 1.8323,
2013
+ "step": 334
2014
+ },
2015
+ {
2016
+ "epoch": 7.77,
2017
+ "learning_rate": 1.0060975609756099e-05,
2018
+ "loss": 1.8368,
2019
+ "step": 335
2020
+ },
2021
+ {
2022
+ "epoch": 7.79,
2023
+ "learning_rate": 9.999999999999999e-06,
2024
+ "loss": 1.8568,
2025
+ "step": 336
2026
+ },
2027
+ {
2028
+ "epoch": 7.81,
2029
+ "learning_rate": 9.939024390243903e-06,
2030
+ "loss": 1.8771,
2031
+ "step": 337
2032
+ },
2033
+ {
2034
+ "epoch": 7.84,
2035
+ "learning_rate": 9.878048780487805e-06,
2036
+ "loss": 1.8877,
2037
+ "step": 338
2038
+ },
2039
+ {
2040
+ "epoch": 7.86,
2041
+ "learning_rate": 9.817073170731707e-06,
2042
+ "loss": 1.8309,
2043
+ "step": 339
2044
+ },
2045
+ {
2046
+ "epoch": 7.88,
2047
+ "learning_rate": 9.75609756097561e-06,
2048
+ "loss": 1.8153,
2049
+ "step": 340
2050
+ },
2051
+ {
2052
+ "epoch": 7.91,
2053
+ "learning_rate": 9.695121951219513e-06,
2054
+ "loss": 1.9367,
2055
+ "step": 341
2056
+ },
2057
+ {
2058
+ "epoch": 7.93,
2059
+ "learning_rate": 9.634146341463415e-06,
2060
+ "loss": 1.7258,
2061
+ "step": 342
2062
+ },
2063
+ {
2064
+ "epoch": 7.95,
2065
+ "learning_rate": 9.573170731707317e-06,
2066
+ "loss": 1.825,
2067
+ "step": 343
2068
+ },
2069
+ {
2070
+ "epoch": 7.98,
2071
+ "learning_rate": 9.51219512195122e-06,
2072
+ "loss": 1.8158,
2073
+ "step": 344
2074
+ },
2075
+ {
2076
+ "epoch": 8.0,
2077
+ "learning_rate": 9.451219512195123e-06,
2078
+ "loss": 1.8606,
2079
+ "step": 345
2080
+ },
2081
+ {
2082
+ "epoch": 8.02,
2083
+ "learning_rate": 9.390243902439024e-06,
2084
+ "loss": 1.881,
2085
+ "step": 346
2086
+ },
2087
+ {
2088
+ "epoch": 8.05,
2089
+ "learning_rate": 9.329268292682927e-06,
2090
+ "loss": 1.8339,
2091
+ "step": 347
2092
+ },
2093
+ {
2094
+ "epoch": 8.07,
2095
+ "learning_rate": 9.26829268292683e-06,
2096
+ "loss": 1.8034,
2097
+ "step": 348
2098
+ },
2099
+ {
2100
+ "epoch": 8.09,
2101
+ "learning_rate": 9.207317073170732e-06,
2102
+ "loss": 1.8334,
2103
+ "step": 349
2104
+ },
2105
+ {
2106
+ "epoch": 8.12,
2107
+ "learning_rate": 9.146341463414634e-06,
2108
+ "loss": 1.8411,
2109
+ "step": 350
2110
+ },
2111
+ {
2112
+ "epoch": 8.14,
2113
+ "learning_rate": 9.085365853658538e-06,
2114
+ "loss": 1.8157,
2115
+ "step": 351
2116
+ },
2117
+ {
2118
+ "epoch": 8.16,
2119
+ "learning_rate": 9.02439024390244e-06,
2120
+ "loss": 1.7685,
2121
+ "step": 352
2122
+ },
2123
+ {
2124
+ "epoch": 8.19,
2125
+ "learning_rate": 8.963414634146342e-06,
2126
+ "loss": 1.8318,
2127
+ "step": 353
2128
+ },
2129
+ {
2130
+ "epoch": 8.21,
2131
+ "learning_rate": 8.902439024390244e-06,
2132
+ "loss": 1.8124,
2133
+ "step": 354
2134
+ },
2135
+ {
2136
+ "epoch": 8.23,
2137
+ "learning_rate": 8.841463414634148e-06,
2138
+ "loss": 1.8656,
2139
+ "step": 355
2140
+ },
2141
+ {
2142
+ "epoch": 8.26,
2143
+ "learning_rate": 8.780487804878048e-06,
2144
+ "loss": 1.8696,
2145
+ "step": 356
2146
+ },
2147
+ {
2148
+ "epoch": 8.28,
2149
+ "learning_rate": 8.719512195121952e-06,
2150
+ "loss": 1.8821,
2151
+ "step": 357
2152
+ },
2153
+ {
2154
+ "epoch": 8.3,
2155
+ "learning_rate": 8.658536585365854e-06,
2156
+ "loss": 1.8023,
2157
+ "step": 358
2158
+ },
2159
+ {
2160
+ "epoch": 8.32,
2161
+ "learning_rate": 8.597560975609756e-06,
2162
+ "loss": 1.8643,
2163
+ "step": 359
2164
+ },
2165
+ {
2166
+ "epoch": 8.35,
2167
+ "learning_rate": 8.536585365853658e-06,
2168
+ "loss": 1.9178,
2169
+ "step": 360
2170
+ },
2171
+ {
2172
+ "epoch": 8.37,
2173
+ "learning_rate": 8.475609756097562e-06,
2174
+ "loss": 1.8703,
2175
+ "step": 361
2176
+ },
2177
+ {
2178
+ "epoch": 8.39,
2179
+ "learning_rate": 8.414634146341464e-06,
2180
+ "loss": 1.8673,
2181
+ "step": 362
2182
+ },
2183
+ {
2184
+ "epoch": 8.42,
2185
+ "learning_rate": 8.353658536585366e-06,
2186
+ "loss": 1.8394,
2187
+ "step": 363
2188
+ },
2189
+ {
2190
+ "epoch": 8.44,
2191
+ "learning_rate": 8.292682926829268e-06,
2192
+ "loss": 1.7786,
2193
+ "step": 364
2194
+ },
2195
+ {
2196
+ "epoch": 8.46,
2197
+ "learning_rate": 8.231707317073172e-06,
2198
+ "loss": 1.8853,
2199
+ "step": 365
2200
+ },
2201
+ {
2202
+ "epoch": 8.49,
2203
+ "learning_rate": 8.170731707317073e-06,
2204
+ "loss": 1.7903,
2205
+ "step": 366
2206
+ },
2207
+ {
2208
+ "epoch": 8.51,
2209
+ "learning_rate": 8.109756097560977e-06,
2210
+ "loss": 1.8189,
2211
+ "step": 367
2212
+ },
2213
+ {
2214
+ "epoch": 8.53,
2215
+ "learning_rate": 8.048780487804879e-06,
2216
+ "loss": 1.8252,
2217
+ "step": 368
2218
+ },
2219
+ {
2220
+ "epoch": 8.56,
2221
+ "learning_rate": 7.98780487804878e-06,
2222
+ "loss": 1.8291,
2223
+ "step": 369
2224
+ },
2225
+ {
2226
+ "epoch": 8.58,
2227
+ "learning_rate": 7.926829268292683e-06,
2228
+ "loss": 1.8915,
2229
+ "step": 370
2230
+ },
2231
+ {
2232
+ "epoch": 8.6,
2233
+ "learning_rate": 7.865853658536587e-06,
2234
+ "loss": 1.8891,
2235
+ "step": 371
2236
+ },
2237
+ {
2238
+ "epoch": 8.63,
2239
+ "learning_rate": 7.804878048780489e-06,
2240
+ "loss": 1.8618,
2241
+ "step": 372
2242
+ },
2243
+ {
2244
+ "epoch": 8.65,
2245
+ "learning_rate": 7.743902439024391e-06,
2246
+ "loss": 1.8479,
2247
+ "step": 373
2248
+ },
2249
+ {
2250
+ "epoch": 8.67,
2251
+ "learning_rate": 7.682926829268293e-06,
2252
+ "loss": 1.8519,
2253
+ "step": 374
2254
+ },
2255
+ {
2256
+ "epoch": 8.7,
2257
+ "learning_rate": 7.621951219512196e-06,
2258
+ "loss": 1.8327,
2259
+ "step": 375
2260
+ },
2261
+ {
2262
+ "epoch": 8.72,
2263
+ "learning_rate": 7.560975609756097e-06,
2264
+ "loss": 1.8108,
2265
+ "step": 376
2266
+ },
2267
+ {
2268
+ "epoch": 8.74,
2269
+ "learning_rate": 7.5e-06,
2270
+ "loss": 1.7837,
2271
+ "step": 377
2272
+ },
2273
+ {
2274
+ "epoch": 8.77,
2275
+ "learning_rate": 7.439024390243902e-06,
2276
+ "loss": 1.85,
2277
+ "step": 378
2278
+ },
2279
+ {
2280
+ "epoch": 8.79,
2281
+ "learning_rate": 7.378048780487805e-06,
2282
+ "loss": 1.8255,
2283
+ "step": 379
2284
+ },
2285
+ {
2286
+ "epoch": 8.81,
2287
+ "learning_rate": 7.317073170731707e-06,
2288
+ "loss": 1.8321,
2289
+ "step": 380
2290
+ },
2291
+ {
2292
+ "epoch": 8.83,
2293
+ "learning_rate": 7.25609756097561e-06,
2294
+ "loss": 1.8171,
2295
+ "step": 381
2296
+ },
2297
+ {
2298
+ "epoch": 8.86,
2299
+ "learning_rate": 7.1951219512195125e-06,
2300
+ "loss": 1.8386,
2301
+ "step": 382
2302
+ },
2303
+ {
2304
+ "epoch": 8.88,
2305
+ "learning_rate": 7.1341463414634146e-06,
2306
+ "loss": 1.8255,
2307
+ "step": 383
2308
+ },
2309
+ {
2310
+ "epoch": 8.9,
2311
+ "learning_rate": 7.0731707317073175e-06,
2312
+ "loss": 1.8649,
2313
+ "step": 384
2314
+ },
2315
+ {
2316
+ "epoch": 8.93,
2317
+ "learning_rate": 7.01219512195122e-06,
2318
+ "loss": 1.83,
2319
+ "step": 385
2320
+ },
2321
+ {
2322
+ "epoch": 8.95,
2323
+ "learning_rate": 6.951219512195123e-06,
2324
+ "loss": 1.7527,
2325
+ "step": 386
2326
+ },
2327
+ {
2328
+ "epoch": 8.97,
2329
+ "learning_rate": 6.890243902439025e-06,
2330
+ "loss": 1.9175,
2331
+ "step": 387
2332
+ },
2333
+ {
2334
+ "epoch": 9.0,
2335
+ "learning_rate": 6.829268292682927e-06,
2336
+ "loss": 1.8951,
2337
+ "step": 388
2338
+ },
2339
+ {
2340
+ "epoch": 9.02,
2341
+ "learning_rate": 6.76829268292683e-06,
2342
+ "loss": 1.8545,
2343
+ "step": 389
2344
+ },
2345
+ {
2346
+ "epoch": 9.04,
2347
+ "learning_rate": 6.707317073170732e-06,
2348
+ "loss": 1.9206,
2349
+ "step": 390
2350
+ },
2351
+ {
2352
+ "epoch": 9.07,
2353
+ "learning_rate": 6.646341463414635e-06,
2354
+ "loss": 1.8398,
2355
+ "step": 391
2356
+ },
2357
+ {
2358
+ "epoch": 9.09,
2359
+ "learning_rate": 6.585365853658537e-06,
2360
+ "loss": 1.7943,
2361
+ "step": 392
2362
+ },
2363
+ {
2364
+ "epoch": 9.11,
2365
+ "learning_rate": 6.524390243902439e-06,
2366
+ "loss": 1.8321,
2367
+ "step": 393
2368
+ },
2369
+ {
2370
+ "epoch": 9.14,
2371
+ "learning_rate": 6.463414634146342e-06,
2372
+ "loss": 1.7706,
2373
+ "step": 394
2374
+ },
2375
+ {
2376
+ "epoch": 9.16,
2377
+ "learning_rate": 6.402439024390244e-06,
2378
+ "loss": 1.9105,
2379
+ "step": 395
2380
+ },
2381
+ {
2382
+ "epoch": 9.18,
2383
+ "learning_rate": 6.341463414634147e-06,
2384
+ "loss": 1.8658,
2385
+ "step": 396
2386
+ },
2387
+ {
2388
+ "epoch": 9.21,
2389
+ "learning_rate": 6.280487804878049e-06,
2390
+ "loss": 1.8315,
2391
+ "step": 397
2392
+ },
2393
+ {
2394
+ "epoch": 9.23,
2395
+ "learning_rate": 6.219512195121951e-06,
2396
+ "loss": 1.909,
2397
+ "step": 398
2398
+ },
2399
+ {
2400
+ "epoch": 9.25,
2401
+ "learning_rate": 6.158536585365854e-06,
2402
+ "loss": 1.8242,
2403
+ "step": 399
2404
+ },
2405
+ {
2406
+ "epoch": 9.28,
2407
+ "learning_rate": 6.0975609756097564e-06,
2408
+ "loss": 1.8862,
2409
+ "step": 400
2410
+ },
2411
+ {
2412
+ "epoch": 9.3,
2413
+ "learning_rate": 6.036585365853659e-06,
2414
+ "loss": 1.8389,
2415
+ "step": 401
2416
+ },
2417
+ {
2418
+ "epoch": 9.32,
2419
+ "learning_rate": 5.9756097560975615e-06,
2420
+ "loss": 1.8099,
2421
+ "step": 402
2422
+ },
2423
+ {
2424
+ "epoch": 9.34,
2425
+ "learning_rate": 5.914634146341464e-06,
2426
+ "loss": 1.8162,
2427
+ "step": 403
2428
+ },
2429
+ {
2430
+ "epoch": 9.37,
2431
+ "learning_rate": 5.853658536585367e-06,
2432
+ "loss": 1.8323,
2433
+ "step": 404
2434
+ },
2435
+ {
2436
+ "epoch": 9.39,
2437
+ "learning_rate": 5.792682926829269e-06,
2438
+ "loss": 1.8445,
2439
+ "step": 405
2440
+ },
2441
+ {
2442
+ "epoch": 9.41,
2443
+ "learning_rate": 5.731707317073172e-06,
2444
+ "loss": 1.7648,
2445
+ "step": 406
2446
+ },
2447
+ {
2448
+ "epoch": 9.44,
2449
+ "learning_rate": 5.670731707317074e-06,
2450
+ "loss": 1.862,
2451
+ "step": 407
2452
+ },
2453
+ {
2454
+ "epoch": 9.46,
2455
+ "learning_rate": 5.609756097560976e-06,
2456
+ "loss": 1.818,
2457
+ "step": 408
2458
+ },
2459
+ {
2460
+ "epoch": 9.48,
2461
+ "learning_rate": 5.548780487804878e-06,
2462
+ "loss": 1.8372,
2463
+ "step": 409
2464
+ },
2465
+ {
2466
+ "epoch": 9.51,
2467
+ "learning_rate": 5.48780487804878e-06,
2468
+ "loss": 1.8508,
2469
+ "step": 410
2470
+ },
2471
+ {
2472
+ "epoch": 9.53,
2473
+ "learning_rate": 5.426829268292683e-06,
2474
+ "loss": 1.8789,
2475
+ "step": 411
2476
+ },
2477
+ {
2478
+ "epoch": 9.55,
2479
+ "learning_rate": 5.365853658536585e-06,
2480
+ "loss": 1.8296,
2481
+ "step": 412
2482
+ },
2483
+ {
2484
+ "epoch": 9.58,
2485
+ "learning_rate": 5.304878048780487e-06,
2486
+ "loss": 1.7921,
2487
+ "step": 413
2488
+ },
2489
+ {
2490
+ "epoch": 9.6,
2491
+ "learning_rate": 5.24390243902439e-06,
2492
+ "loss": 1.8492,
2493
+ "step": 414
2494
+ },
2495
+ {
2496
+ "epoch": 9.62,
2497
+ "learning_rate": 5.182926829268292e-06,
2498
+ "loss": 1.853,
2499
+ "step": 415
2500
+ },
2501
+ {
2502
+ "epoch": 9.65,
2503
+ "learning_rate": 5.121951219512195e-06,
2504
+ "loss": 1.883,
2505
+ "step": 416
2506
+ },
2507
+ {
2508
+ "epoch": 9.67,
2509
+ "learning_rate": 5.0609756097560974e-06,
2510
+ "loss": 1.7697,
2511
+ "step": 417
2512
+ },
2513
+ {
2514
+ "epoch": 9.69,
2515
+ "learning_rate": 4.9999999999999996e-06,
2516
+ "loss": 1.7551,
2517
+ "step": 418
2518
+ },
2519
+ {
2520
+ "epoch": 9.72,
2521
+ "learning_rate": 4.9390243902439025e-06,
2522
+ "loss": 1.8302,
2523
+ "step": 419
2524
+ },
2525
+ {
2526
+ "epoch": 9.74,
2527
+ "learning_rate": 4.878048780487805e-06,
2528
+ "loss": 1.8384,
2529
+ "step": 420
2530
+ },
2531
+ {
2532
+ "epoch": 9.76,
2533
+ "learning_rate": 4.817073170731708e-06,
2534
+ "loss": 1.7868,
2535
+ "step": 421
2536
+ },
2537
+ {
2538
+ "epoch": 9.79,
2539
+ "learning_rate": 4.75609756097561e-06,
2540
+ "loss": 1.912,
2541
+ "step": 422
2542
+ },
2543
+ {
2544
+ "epoch": 9.81,
2545
+ "learning_rate": 4.695121951219512e-06,
2546
+ "loss": 1.7863,
2547
+ "step": 423
2548
+ },
2549
+ {
2550
+ "epoch": 9.83,
2551
+ "learning_rate": 4.634146341463415e-06,
2552
+ "loss": 1.863,
2553
+ "step": 424
2554
+ },
2555
+ {
2556
+ "epoch": 9.86,
2557
+ "learning_rate": 4.573170731707317e-06,
2558
+ "loss": 1.8152,
2559
+ "step": 425
2560
+ },
2561
+ {
2562
+ "epoch": 9.88,
2563
+ "learning_rate": 4.51219512195122e-06,
2564
+ "loss": 1.8181,
2565
+ "step": 426
2566
+ },
2567
+ {
2568
+ "epoch": 9.9,
2569
+ "learning_rate": 4.451219512195122e-06,
2570
+ "loss": 1.8361,
2571
+ "step": 427
2572
+ },
2573
+ {
2574
+ "epoch": 9.92,
2575
+ "learning_rate": 4.390243902439024e-06,
2576
+ "loss": 1.9204,
2577
+ "step": 428
2578
+ },
2579
+ {
2580
+ "epoch": 9.95,
2581
+ "learning_rate": 4.329268292682927e-06,
2582
+ "loss": 1.8739,
2583
+ "step": 429
2584
+ },
2585
+ {
2586
+ "epoch": 9.97,
2587
+ "learning_rate": 4.268292682926829e-06,
2588
+ "loss": 1.8166,
2589
+ "step": 430
2590
+ },
2591
+ {
2592
+ "epoch": 9.99,
2593
+ "learning_rate": 4.207317073170732e-06,
2594
+ "loss": 1.8519,
2595
+ "step": 431
2596
+ },
2597
+ {
2598
+ "epoch": 10.02,
2599
+ "learning_rate": 4.146341463414634e-06,
2600
+ "loss": 1.7722,
2601
+ "step": 432
2602
+ },
2603
+ {
2604
+ "epoch": 10.04,
2605
+ "learning_rate": 4.085365853658536e-06,
2606
+ "loss": 1.8071,
2607
+ "step": 433
2608
+ },
2609
+ {
2610
+ "epoch": 10.06,
2611
+ "learning_rate": 4.024390243902439e-06,
2612
+ "loss": 1.8382,
2613
+ "step": 434
2614
+ },
2615
+ {
2616
+ "epoch": 10.09,
2617
+ "learning_rate": 3.9634146341463414e-06,
2618
+ "loss": 1.8579,
2619
+ "step": 435
2620
+ },
2621
+ {
2622
+ "epoch": 10.11,
2623
+ "learning_rate": 3.902439024390244e-06,
2624
+ "loss": 1.8477,
2625
+ "step": 436
2626
+ },
2627
+ {
2628
+ "epoch": 10.13,
2629
+ "learning_rate": 3.8414634146341465e-06,
2630
+ "loss": 1.8037,
2631
+ "step": 437
2632
+ },
2633
+ {
2634
+ "epoch": 10.16,
2635
+ "learning_rate": 3.7804878048780486e-06,
2636
+ "loss": 1.8286,
2637
+ "step": 438
2638
+ },
2639
+ {
2640
+ "epoch": 10.18,
2641
+ "learning_rate": 3.719512195121951e-06,
2642
+ "loss": 1.8407,
2643
+ "step": 439
2644
+ },
2645
+ {
2646
+ "epoch": 10.2,
2647
+ "learning_rate": 3.6585365853658537e-06,
2648
+ "loss": 1.8503,
2649
+ "step": 440
2650
+ },
2651
+ {
2652
+ "epoch": 10.23,
2653
+ "learning_rate": 3.5975609756097562e-06,
2654
+ "loss": 1.7788,
2655
+ "step": 441
2656
+ },
2657
+ {
2658
+ "epoch": 10.25,
2659
+ "learning_rate": 3.5365853658536588e-06,
2660
+ "loss": 1.8687,
2661
+ "step": 442
2662
+ },
2663
+ {
2664
+ "epoch": 10.27,
2665
+ "learning_rate": 3.4756097560975613e-06,
2666
+ "loss": 1.7877,
2667
+ "step": 443
2668
+ },
2669
+ {
2670
+ "epoch": 10.3,
2671
+ "learning_rate": 3.4146341463414634e-06,
2672
+ "loss": 1.8842,
2673
+ "step": 444
2674
+ },
2675
+ {
2676
+ "epoch": 10.32,
2677
+ "learning_rate": 3.353658536585366e-06,
2678
+ "loss": 1.7731,
2679
+ "step": 445
2680
+ },
2681
+ {
2682
+ "epoch": 10.34,
2683
+ "learning_rate": 3.2926829268292685e-06,
2684
+ "loss": 1.9421,
2685
+ "step": 446
2686
+ },
2687
+ {
2688
+ "epoch": 10.37,
2689
+ "learning_rate": 3.231707317073171e-06,
2690
+ "loss": 1.893,
2691
+ "step": 447
2692
+ },
2693
+ {
2694
+ "epoch": 10.39,
2695
+ "learning_rate": 3.1707317073170736e-06,
2696
+ "loss": 1.8234,
2697
+ "step": 448
2698
+ },
2699
+ {
2700
+ "epoch": 10.41,
2701
+ "learning_rate": 3.1097560975609757e-06,
2702
+ "loss": 1.7849,
2703
+ "step": 449
2704
+ },
2705
+ {
2706
+ "epoch": 10.43,
2707
+ "learning_rate": 3.0487804878048782e-06,
2708
+ "loss": 1.8656,
2709
+ "step": 450
2710
+ },
2711
+ {
2712
+ "epoch": 10.46,
2713
+ "learning_rate": 2.9878048780487808e-06,
2714
+ "loss": 1.9295,
2715
+ "step": 451
2716
+ },
2717
+ {
2718
+ "epoch": 10.48,
2719
+ "learning_rate": 2.9268292682926833e-06,
2720
+ "loss": 1.8294,
2721
+ "step": 452
2722
+ },
2723
+ {
2724
+ "epoch": 10.5,
2725
+ "learning_rate": 2.865853658536586e-06,
2726
+ "loss": 1.8313,
2727
+ "step": 453
2728
+ },
2729
+ {
2730
+ "epoch": 10.53,
2731
+ "learning_rate": 2.804878048780488e-06,
2732
+ "loss": 1.8892,
2733
+ "step": 454
2734
+ },
2735
+ {
2736
+ "epoch": 10.55,
2737
+ "learning_rate": 2.74390243902439e-06,
2738
+ "loss": 1.8483,
2739
+ "step": 455
2740
+ },
2741
+ {
2742
+ "epoch": 10.57,
2743
+ "learning_rate": 2.6829268292682926e-06,
2744
+ "loss": 1.7787,
2745
+ "step": 456
2746
+ },
2747
+ {
2748
+ "epoch": 10.6,
2749
+ "learning_rate": 2.621951219512195e-06,
2750
+ "loss": 1.8363,
2751
+ "step": 457
2752
+ },
2753
+ {
2754
+ "epoch": 10.62,
2755
+ "learning_rate": 2.5609756097560977e-06,
2756
+ "loss": 1.8556,
2757
+ "step": 458
2758
+ },
2759
+ {
2760
+ "epoch": 10.64,
2761
+ "learning_rate": 2.4999999999999998e-06,
2762
+ "loss": 1.8664,
2763
+ "step": 459
2764
+ },
2765
+ {
2766
+ "epoch": 10.67,
2767
+ "learning_rate": 2.4390243902439023e-06,
2768
+ "loss": 1.8107,
2769
+ "step": 460
2770
+ },
2771
+ {
2772
+ "epoch": 10.69,
2773
+ "learning_rate": 2.378048780487805e-06,
2774
+ "loss": 1.9115,
2775
+ "step": 461
2776
+ },
2777
+ {
2778
+ "epoch": 10.71,
2779
+ "learning_rate": 2.3170731707317074e-06,
2780
+ "loss": 1.8131,
2781
+ "step": 462
2782
+ },
2783
+ {
2784
+ "epoch": 10.74,
2785
+ "learning_rate": 2.25609756097561e-06,
2786
+ "loss": 1.8422,
2787
+ "step": 463
2788
+ },
2789
+ {
2790
+ "epoch": 10.76,
2791
+ "learning_rate": 2.195121951219512e-06,
2792
+ "loss": 1.7932,
2793
+ "step": 464
2794
+ },
2795
+ {
2796
+ "epoch": 10.78,
2797
+ "learning_rate": 2.1341463414634146e-06,
2798
+ "loss": 1.8752,
2799
+ "step": 465
2800
+ },
2801
+ {
2802
+ "epoch": 10.81,
2803
+ "learning_rate": 2.073170731707317e-06,
2804
+ "loss": 1.7811,
2805
+ "step": 466
2806
+ },
2807
+ {
2808
+ "epoch": 10.83,
2809
+ "learning_rate": 2.0121951219512197e-06,
2810
+ "loss": 1.7859,
2811
+ "step": 467
2812
+ },
2813
+ {
2814
+ "epoch": 10.85,
2815
+ "learning_rate": 1.951219512195122e-06,
2816
+ "loss": 1.8503,
2817
+ "step": 468
2818
+ },
2819
+ {
2820
+ "epoch": 10.88,
2821
+ "learning_rate": 1.8902439024390243e-06,
2822
+ "loss": 1.8373,
2823
+ "step": 469
2824
+ },
2825
+ {
2826
+ "epoch": 10.9,
2827
+ "learning_rate": 1.8292682926829268e-06,
2828
+ "loss": 1.9218,
2829
+ "step": 470
2830
+ },
2831
+ {
2832
+ "epoch": 10.92,
2833
+ "learning_rate": 1.7682926829268294e-06,
2834
+ "loss": 1.7876,
2835
+ "step": 471
2836
+ },
2837
+ {
2838
+ "epoch": 10.94,
2839
+ "learning_rate": 1.7073170731707317e-06,
2840
+ "loss": 1.859,
2841
+ "step": 472
2842
+ },
2843
+ {
2844
+ "epoch": 10.97,
2845
+ "learning_rate": 1.6463414634146342e-06,
2846
+ "loss": 1.8083,
2847
+ "step": 473
2848
+ },
2849
+ {
2850
+ "epoch": 10.99,
2851
+ "learning_rate": 1.5853658536585368e-06,
2852
+ "loss": 1.859,
2853
+ "step": 474
2854
+ },
2855
+ {
2856
+ "epoch": 11.01,
2857
+ "learning_rate": 1.5243902439024391e-06,
2858
+ "loss": 1.7685,
2859
+ "step": 475
2860
+ },
2861
+ {
2862
+ "epoch": 11.04,
2863
+ "learning_rate": 1.4634146341463416e-06,
2864
+ "loss": 1.7692,
2865
+ "step": 476
2866
+ },
2867
+ {
2868
+ "epoch": 11.06,
2869
+ "learning_rate": 1.402439024390244e-06,
2870
+ "loss": 1.8202,
2871
+ "step": 477
2872
+ },
2873
+ {
2874
+ "epoch": 11.08,
2875
+ "learning_rate": 1.3414634146341463e-06,
2876
+ "loss": 1.8052,
2877
+ "step": 478
2878
+ },
2879
+ {
2880
+ "epoch": 11.11,
2881
+ "learning_rate": 1.2804878048780488e-06,
2882
+ "loss": 1.8734,
2883
+ "step": 479
2884
+ },
2885
+ {
2886
+ "epoch": 11.13,
2887
+ "learning_rate": 1.2195121951219512e-06,
2888
+ "loss": 1.7973,
2889
+ "step": 480
2890
+ },
2891
+ {
2892
+ "epoch": 11.15,
2893
+ "learning_rate": 1.1585365853658537e-06,
2894
+ "loss": 1.8462,
2895
+ "step": 481
2896
+ },
2897
+ {
2898
+ "epoch": 11.18,
2899
+ "learning_rate": 1.097560975609756e-06,
2900
+ "loss": 1.8119,
2901
+ "step": 482
2902
+ },
2903
+ {
2904
+ "epoch": 11.2,
2905
+ "learning_rate": 1.0365853658536586e-06,
2906
+ "loss": 1.9105,
2907
+ "step": 483
2908
+ },
2909
+ {
2910
+ "epoch": 11.22,
2911
+ "learning_rate": 9.75609756097561e-07,
2912
+ "loss": 1.8709,
2913
+ "step": 484
2914
+ },
2915
+ {
2916
+ "epoch": 11.25,
2917
+ "learning_rate": 9.146341463414634e-07,
2918
+ "loss": 1.871,
2919
+ "step": 485
2920
+ },
2921
+ {
2922
+ "epoch": 11.27,
2923
+ "learning_rate": 8.536585365853659e-07,
2924
+ "loss": 1.7683,
2925
+ "step": 486
2926
+ },
2927
+ {
2928
+ "epoch": 11.29,
2929
+ "learning_rate": 7.926829268292684e-07,
2930
+ "loss": 1.8853,
2931
+ "step": 487
2932
+ },
2933
+ {
2934
+ "epoch": 11.32,
2935
+ "learning_rate": 7.317073170731708e-07,
2936
+ "loss": 1.7629,
2937
+ "step": 488
2938
+ },
2939
+ {
2940
+ "epoch": 11.34,
2941
+ "learning_rate": 6.707317073170731e-07,
2942
+ "loss": 1.7865,
2943
+ "step": 489
2944
+ },
2945
+ {
2946
+ "epoch": 11.36,
2947
+ "learning_rate": 6.097560975609756e-07,
2948
+ "loss": 1.9186,
2949
+ "step": 490
2950
+ },
2951
+ {
2952
+ "epoch": 11.39,
2953
+ "learning_rate": 5.48780487804878e-07,
2954
+ "loss": 1.8269,
2955
+ "step": 491
2956
+ },
2957
+ {
2958
+ "epoch": 11.41,
2959
+ "learning_rate": 4.878048780487805e-07,
2960
+ "loss": 1.8538,
2961
+ "step": 492
2962
+ },
2963
+ {
2964
+ "epoch": 11.43,
2965
+ "learning_rate": 4.2682926829268293e-07,
2966
+ "loss": 1.8228,
2967
+ "step": 493
2968
+ },
2969
+ {
2970
+ "epoch": 11.46,
2971
+ "learning_rate": 3.658536585365854e-07,
2972
+ "loss": 1.8196,
2973
+ "step": 494
2974
+ },
2975
+ {
2976
+ "epoch": 11.48,
2977
+ "learning_rate": 3.048780487804878e-07,
2978
+ "loss": 1.8104,
2979
+ "step": 495
2980
+ },
2981
+ {
2982
+ "epoch": 11.5,
2983
+ "learning_rate": 2.439024390243903e-07,
2984
+ "loss": 1.8221,
2985
+ "step": 496
2986
+ },
2987
+ {
2988
+ "epoch": 11.52,
2989
+ "learning_rate": 1.829268292682927e-07,
2990
+ "loss": 1.8234,
2991
+ "step": 497
2992
+ },
2993
+ {
2994
+ "epoch": 11.55,
2995
+ "learning_rate": 1.2195121951219514e-07,
2996
+ "loss": 1.8229,
2997
+ "step": 498
2998
+ },
2999
+ {
3000
+ "epoch": 11.57,
3001
+ "learning_rate": 6.097560975609757e-08,
3002
+ "loss": 1.9636,
3003
+ "step": 499
3004
+ },
3005
+ {
3006
+ "epoch": 11.59,
3007
+ "learning_rate": 0.0,
3008
+ "loss": 1.8427,
3009
+ "step": 500
3010
+ }
3011
+ ],
3012
+ "logging_steps": 1,
3013
+ "max_steps": 500,
3014
+ "num_input_tokens_seen": 0,
3015
+ "num_train_epochs": 12,
3016
+ "save_steps": 50,
3017
+ "total_flos": 1.3295810584164434e+18,
3018
+ "train_batch_size": 2,
3019
+ "trial_name": null,
3020
+ "trial_params": null
3021
+ }
lora_wiki/training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:35f3ce3e3c109aa8d06d1fb96f914cfd439b11e0a71b8e39330c62e044f57071
3
+ size 4856