File size: 16,263 Bytes
09d8de6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 |
import os
import math
import json
import numpy as np
import pandas as pd
import random
import logging
import argparse
import diffusers
import transformers
from transformers import SchedulerType, get_scheduler
from tqdm.auto import tqdm
from datetime import datetime
import torch
from torch.utils.data import Dataset, DataLoader
import datasets
from datasets import load_dataset
from accelerate import Accelerator
from accelerate.logging import get_logger
from accelerate.utils import set_seed
import sys
import utils.torch_tools as torch_tools
import models.controllable_diffusion as ConDiffusion
import models.controllable_dataset as ConDataset
from data.filter_data import get_event_list
logger = get_logger(__name__)
def parse_args():
parser = argparse.ArgumentParser(description="Finetune a diffusion model for text to audio generation task.")
parser.add_argument(
"--train_file", '-f', type=str, default="data/meta_data/train.json"
)
parser.add_argument(
"--batch_size", '-b', type=int, default=1,
help="Batch size (per device) for the training dataloader.",
)
parser.add_argument(
"--learning_rate", '-lr', type=float, default=3e-5,
help="Initial learning rate (after the potential warmup period) to use.",
)
parser.add_argument(
"--num_epochs", '-e', type=int, default=40,
help="Total number of training epochs to perform."
)
parser.add_argument(
"--output_dir", '-o', type=str, default=None,
help="Where to store the final model."
)
parser.add_argument(
"--model_class", '-m', type=str, default="ClapText_Onset_2_Audio_Diffusion", #TextOnset2AudioDiffusion
help="name of model_class"
)
parser.add_argument(
"--dataset_class", '-dc', type=str, default="Clap_Onset_2_Audio_Dataset", #Text_Onset2AudioDataset
help="name of model_class"
)
parser.add_argument(
"--duration", '-d', type=float, default=10,
help="Audio duration."
)
parser.add_argument(
"--num_examples", '-n', type=int, default=-1,
help="How many examples to use for training.",
)
parser.add_argument(
"--scheduler_name", type=str,
default="stabilityai/stable-diffusion-2-1",
help="Scheduler identifier.",
)
parser.add_argument(
"--unet_model_config", type=str, default="utils/configs/frequency.json",
help="UNet model config json path.",
)
parser.add_argument(
"--text_column", type=str, default="captions",
help="The name of the column in the datasets containing the input texts.",
)
parser.add_argument(
"--onset_column", type=str, default="onset",
help="The name of the column in the datasets containing the osnet.",
)
parser.add_argument(
"--audio_column", type=str, default="location",
help="The name of the column in the datasets containing the audio paths.",
)
if True:
parser.add_argument(
"--augment", action="store_true", default=False,
help="Augment training data.",
)
parser.add_argument(
"--uncondition", action="store_true", default=False,
help="10% uncondition for training.",
)
parser.add_argument(
"--weight_decay", type=float, default=1e-8,
help="Weight decay to use."
)
parser.add_argument(
"--snr_gamma", type=float,
#default=None,
default=5.0,
help="SNR weighting gamma to be used if rebalancing the loss. Recommended value is 5.0. "
"More details here: https://arxiv.org/abs/2303.09556.",
)
parser.add_argument(
"--max_train_steps", type=int, default=None,
help="Total number of training steps to perform. If provided, overrides num_epochs.",
)
parser.add_argument(
"--gradient_accumulation_steps", type=int, default=4,
help="Number of updates steps to accumulate before performing a backward/update pass.",
)
parser.add_argument(
"--lr_scheduler_type", type=SchedulerType, default="linear",
help="The scheduler type to use.",
choices=["linear", "cosine", "cosine_with_restarts", "polynomial", "constant", "constant_with_warmup"],
)
parser.add_argument(
"--num_warmup_steps", type=int, default=0,
help="Number of steps for the warmup in the lr scheduler."
)
parser.add_argument(
"--adam_beta1", type=float, default=0.9,
help="The beta1 parameter for the Adam optimizer."
)
parser.add_argument(
"--adam_beta2", type=float, default=0.999,
help="The beta2 parameter for the Adam optimizer."
)
parser.add_argument(
"--adam_weight_decay", type=float, default=1e-2,
help="Weight decay to use."
)
parser.add_argument(
"--adam_epsilon", type=float, default=1e-08,
help="Epsilon value for the Adam optimizer"
)
parser.add_argument(
"--seed", type=int, default=0,
help="A seed for reproducible training."
)
parser.add_argument(
"--checkpointing_steps", type=str, default="best",
help="Whether the various states should be saved at the end of every 'epoch' or 'best' whenever validation loss decreases.",
)
parser.add_argument(
"--save_every", type=int, default=40,
help="Save model after every how many epochs when checkpointing_steps is set to best."
)
parser.add_argument(
"--resume_from_checkpoint", type=str, default=None,
help="If the training should continue from a local checkpoint folder.",
)
parser.add_argument(
"--with_tracking", action="store_true",
help="Whether to enable experiment trackers for logging.",
)
parser.add_argument(
"--report_to", type=str, default="all",
help=(
'The integration to report the results and logs to. Supported platforms are `"tensorboard"`,'
' `"wandb"`, `"comet_ml"` and `"clearml"`. Use `"all"` (default) to report to all integrations.'
"Only applicable when `--with_tracking` is passed."
),
)
args = parser.parse_args()
return args
def main():
args = parse_args()
args.event_list = get_event_list()
print(args)
accelerator_log_kwargs = {}
if args.with_tracking:
accelerator_log_kwargs["log_with"] = args.report_to
accelerator_log_kwargs["logging_dir"] = args.output_dir
accelerator = Accelerator(gradient_accumulation_steps=args.gradient_accumulation_steps, **accelerator_log_kwargs)
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
datasets.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
transformers.utils.logging.set_verbosity_error()
# If passed along, set the training seed now.
#if args.seed is not None:
set_seed(args.seed)
seed = args.seed
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
# Handle output directory creation and wandb tracking
if accelerator.is_main_process:
if args.output_dir is None or args.output_dir == "":
args.output_dir = f"ckpts/{args.model_class}_{args.dataset_class}/base"
elif args.output_dir is not None:
args.output_dir = f"ckpts/{args.model_class}_{args.dataset_class}/" + args.output_dir
os.makedirs(args.output_dir, exist_ok=True)
with open("{}/summary.jsonl".format(args.output_dir), "w") as f:
f.write(json.dumps(dict(vars(args))) + "\n\n")
accelerator.project_configuration.automatic_checkpoint_naming = False
accelerator.wait_for_everyone()
# Initialize models
pretrained_model_name = "audioldm-s-full"
vae, stft = ConDiffusion.build_pretrained_models(pretrained_model_name)
#vae, stft, clap, _ = build_vae_stft_clap_models(pretrained_model_name)
model = getattr(ConDiffusion, args.model_class)(
scheduler_name=args.scheduler_name, unet_model_config_path=args.unet_model_config,
snr_gamma=args.snr_gamma, uncondition=args.uncondition,
)
# Get the datasets
extension = args.train_file.split(".")[-1]
raw_datasets = load_dataset(extension, data_files={"train": args.train_file})
with accelerator.main_process_first():
train_dataset = getattr(ConDataset, args.dataset_class)(raw_datasets["train"], args)
accelerator.print("Num instances in train: {}".format(train_dataset.get_num_instances()))
train_dataloader = DataLoader(train_dataset, shuffle=True, batch_size=args.batch_size, collate_fn=train_dataset.collate_fn)
# Optimizer
optimizer_parameters = model.parameters()
if hasattr(model, "text_encoder"):
for param in model.text_encoder.parameters():
param.requires_grad = False
model.text_encoder.eval()
optimizer_parameters = model.unet.parameters()
accelerator.print("Optimizing UNet parameters.")
num_trainable_parameters = sum(p.numel() for p in model.parameters() if p.requires_grad)
accelerator.print("Num trainable parameters: {}".format(num_trainable_parameters))
optimizer = torch.optim.AdamW(
optimizer_parameters, lr=args.learning_rate,
betas=(args.adam_beta1, args.adam_beta2),
weight_decay=args.adam_weight_decay,
eps=args.adam_epsilon,
)
# Scheduler and math around the number of training steps.
overrode_max_train_steps = False
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if args.max_train_steps is None:
args.max_train_steps = args.num_epochs * num_update_steps_per_epoch
overrode_max_train_steps = True
lr_scheduler = get_scheduler(
name=args.lr_scheduler_type,
optimizer=optimizer,
num_warmup_steps=args.num_warmup_steps * args.gradient_accumulation_steps,
num_training_steps=args.max_train_steps * args.gradient_accumulation_steps,
)
# Prepare everything with our `accelerator`.
vae, stft, model, optimizer, lr_scheduler = accelerator.prepare(
vae, stft, model, optimizer, lr_scheduler
)
train_dataloader = accelerator.prepare(
train_dataloader
)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps)
if overrode_max_train_steps:
args.max_train_steps = args.num_epochs * num_update_steps_per_epoch
# Afterwards we recalculate our number of training epochs
args.num_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch)
# We need to initialize the trackers we use, and also store our configuration.
# The trackers initializes automatically on the main process.
if args.with_tracking:
experiment_config = vars(args)
# TensorBoard cannot log Enums, need the raw value
experiment_config["lr_scheduler_type"] = experiment_config["lr_scheduler_type"].value
accelerator.init_trackers("text_to_audio_diffusion", experiment_config)
# Train!
total_batch_size = args.batch_size * accelerator.num_processes * args.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {args.num_epochs}")
logger.info(f" Instantaneous batch size per device = {args.batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {args.max_train_steps}")
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(args.max_train_steps), disable=not accelerator.is_local_main_process)
completed_steps = 0
starting_epoch = 0
# Potentially load in the weights and states from a previous save
if args.resume_from_checkpoint:
if args.resume_from_checkpoint is not None or args.resume_from_checkpoint != "":
accelerator.load_state(args.resume_from_checkpoint)
# path = os.path.basename(args.resume_from_checkpoint)
accelerator.print(f"Resumed from local checkpoint: {args.resume_from_checkpoint}")
else:
# Get the most recent checkpoint
dirs = [f.name for f in os.scandir(os.getcwd()) if f.is_dir()]
dirs.sort(key=os.path.getctime)
# path = dirs[-1] # Sorts folders by date modified, most recent checkpoint is the last
# Duration of the audio clips in seconds
duration, best_loss, best_epoch = args.duration, np.inf, 0
for epoch in range(starting_epoch, args.num_epochs):
model.train()
total_loss = 0
logger.info(f"train epoch {epoch} begin!")
for step, batch in enumerate(train_dataloader):
with accelerator.accumulate(model):
device = model.device
_, onset, event_info, audios, _, _ = batch #idx, onset, event_info, audios, caption, onset_str
target_length = int(duration * 102.4)
with torch.no_grad():
unwrapped_vae = accelerator.unwrap_model(vae)
mel, _, waveform = torch_tools.wav_to_fbank(audios, target_length, stft)
mel = mel.unsqueeze(1).to(device)
true_latent = unwrapped_vae.get_first_stage_encoding(unwrapped_vae.encode_first_stage(mel))
loss = model({"latent":true_latent, "onset":onset, "event_info":event_info}, validation_mode=False)
total_loss += loss.detach().float()
accelerator.backward(loss)
optimizer.step()
lr_scheduler.step()
optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
completed_steps += 1
if completed_steps >= args.max_train_steps:
break
logger.info(f"train epoch {epoch} finish!")
model.uncondition = False
if accelerator.is_main_process:
result = {}
result["epoch"] = epoch,
result["step"] = completed_steps
result["train_loss"] = round(total_loss.item()/len(train_dataloader), 4)
if result["train_loss"] < best_loss:
best_loss = result["train_loss"]
best_epoch = epoch
if args.checkpointing_steps == "best":
accelerator.save(accelerator.unwrap_model(model).state_dict(), f"{args.output_dir}/best.pt")
# Save all states -> continue training
# accelerator.save_state("{}/{}".format(args.output_dir, "best"))
result["best_eopch"] = best_epoch
logger.info(result)
result["time"] = datetime.now().strftime("%y-%m-%d-%H-%M-%S")
with open("{}/summary.jsonl".format(args.output_dir), "a") as f:
f.write(json.dumps(result) + "\n\n")
if args.with_tracking:
accelerator.log(result, step=completed_steps)
if __name__ == "__main__":
main()
|