import torch from safetensors.torch import load_model, save_model import logging # Logging setup logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s") class CharmModel: """Handles loading and saving advanced safetensors models for Charm 15.""" def __init__(self, model_path: str): self.model_path = model_path self.model = None def load(self): """Loads Model 2 of 10 safely with optimized memory handling.""" try: logging.info(f"Loading model from {self.model_path}...") self.model = load_model(torch.nn.Module(), self.model_path) logging.info("Model loaded successfully.") except Exception as e: logging.error(f"Error loading model: {e}") def save(self, save_path: str): """Saves the model safely in safetensors format.""" if self.model: try: logging.info(f"Saving model to {save_path}...") save_model(self.model, save_path) logging.info("Model saved successfully.") except Exception as e: logging.error(f"Error saving model: {e}") else: logging.warning("No model loaded. Cannot save.") def infer(self, input_data): """Runs inference on the loaded model (Placeholder for actual logic).""" if self.model: logging.info("Running inference...") # Implement AI logic here (depends on actual model architecture) return "Inference result" else: logging.warning("No model loaded. Cannot perform inference.") return None