import torch from transformers import AutoModelForCausalLM, PreTrainedTokenizerFast # Paths to your fine-tuned model and tokenizer (update these) MODEL_DIR = "./mixtral_finetuned" # Directory from your training script TOKENIZER_JSON = "./mixtral_finetuned/tokenizer.json" # Custom tokenizer file # Device setup device = "cuda" if torch.cuda.is_available() else "cpu" print(f"Using device: {device}") class Charm15Inference: def __init__(self, model_dir=MODEL_DIR, tokenizer_json=TOKENIZER_JSON): """Initialize model and tokenizer for inference.""" try: # Load tokenizer from JSON (assumes your custom BPE or fine-tuned output) self.tokenizer = PreTrainedTokenizerFast(tokenizer_file=tokenizer_json) if self.tokenizer.pad_token is None: self.tokenizer.pad_token = self.tokenizer.eos_token # Load model with optimizations self.model = AutoModelForCausalLM.from_pretrained( model_dir, torch_dtype=torch.bfloat16, # Match your training dtype device_map="auto", # Auto-distribute across GPU/CPU low_cpu_mem_usage=True # Reduce RAM usage ).to(device) print(f"Loaded model from {model_dir} and tokenizer from {tokenizer_json}") except Exception as e: print(f"Error loading model/tokenizer: {e}") raise def generate_response(self, prompt, max_length=2048, temperature=0.7, top_k=50, top_p=0.95): """Generate a response from the model.""" try: # Tokenize input inputs = self.tokenizer(prompt, return_tensors="pt").to(device) # Generate output with your earlier generation config in mind output = self.model.generate( **inputs, max_length=max_length, # Aligned with your 2048/4096 configs temperature=temperature, top_k=top_k, top_p=top_p, do_sample=True, # Sampling for variety repetition_penalty=1.1, # From your generation config no_repeat_ngram_size=2, # Prevent repetition use_cache=True # Speed up inference ) return self.tokenizer.decode(output[0], skip_special_tokens=True) except Exception as e: print(f"Generation error: {e}") return "Sorry, I couldn’t generate a response." if __name__ == "__main__": # Initialize inference class try: infer = Charm15Inference() except Exception as e: print(f"Initialization failed: {e}") exit(1) # Interactive loop print("Chat with Charm 15 (type 'exit' or 'quit' to stop):") while True: user_input = input("User: ") if user_input.lower() in ["exit", "quit"]: print("Goodbye!") break if not user_input.strip(): print("Charm 15: Please say something!") continue response = infer.generate_response(user_input) print("Charm 15:", response) # Cleanup del infer.model torch.cuda.empty_cache() print("Memory cleared.")