Create tokenizer_setup.py
Browse files- tokenizer_setup.py +120 -0
tokenizer_setup.py
ADDED
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import sentencepiece as spm
|
3 |
+
from transformers import AutoTokenizer, PreTrainedTokenizerFast
|
4 |
+
|
5 |
+
class TokenizerSetup:
|
6 |
+
def __init__(self, model_path="tokenizer", model_type="bpe", vocab_size=32000, hf_model=None):
|
7 |
+
"""Initialize tokenizer setup for custom or pretrained use."""
|
8 |
+
self.model_path = model_path
|
9 |
+
self.model_type = model_type.lower() # Normalize: bpe, unigram, char, word
|
10 |
+
self.vocab_size = vocab_size
|
11 |
+
self.hf_model = hf_model
|
12 |
+
self.tokenizer = None
|
13 |
+
|
14 |
+
# Validate model_type
|
15 |
+
valid_types = ["bpe", "unigram", "char", "word"]
|
16 |
+
if self.model_type not in valid_types:
|
17 |
+
print(f"⚠️ Invalid model_type '{self.model_type}'. Choose from {valid_types}")
|
18 |
+
self.model_type = "bpe"
|
19 |
+
|
20 |
+
def train_sentencepiece(self, input_file):
|
21 |
+
"""Train a SentencePiece tokenizer with specified settings."""
|
22 |
+
if not os.path.exists(input_file):
|
23 |
+
print(f"⚠️ Input file {input_file} not found! Provide a valid text corpus.")
|
24 |
+
return
|
25 |
+
|
26 |
+
try:
|
27 |
+
spm.SentencePieceTrainer.Train(
|
28 |
+
f"--input={input_file} "
|
29 |
+
f"--model_prefix={self.model_path} "
|
30 |
+
f"--vocab_size={self.vocab_size} "
|
31 |
+
f"--model_type={self.model_type} "
|
32 |
+
f"--pad_id=0 --unk_id=1 --bos_id=2 --eos_id=3 "
|
33 |
+
f"--user_defined_symbols=<pad>,<unk>,<bos>,<eos>" # Explicit special tokens
|
34 |
+
)
|
35 |
+
print(f"✅ Trained SentencePiece tokenizer. Saved as {self.model_path}.model")
|
36 |
+
except Exception as e:
|
37 |
+
print(f"⚠️ Error training SentencePiece: {e}")
|
38 |
+
|
39 |
+
def load_tokenizer(self):
|
40 |
+
"""Load either a SentencePiece or Hugging Face tokenizer."""
|
41 |
+
try:
|
42 |
+
if self.hf_model:
|
43 |
+
self.tokenizer = AutoTokenizer.from_pretrained(self.hf_model)
|
44 |
+
print(f"✅ Loaded Hugging Face tokenizer from {self.hf_model}")
|
45 |
+
else:
|
46 |
+
sp_model = f"{self.model_path}.model"
|
47 |
+
if not os.path.exists(sp_model):
|
48 |
+
print(f"⚠️ {sp_model} not found! Train it first.")
|
49 |
+
return
|
50 |
+
|
51 |
+
sp = spm.SentencePieceProcessor(model_file=sp_model)
|
52 |
+
self.tokenizer = PreTrainedTokenizerFast(
|
53 |
+
tokenizer_object=sp,
|
54 |
+
pad_token="<pad>",
|
55 |
+
unk_token="<unk>",
|
56 |
+
bos_token="<bos>",
|
57 |
+
eos_token="<eos>"
|
58 |
+
)
|
59 |
+
print(f"✅ Loaded SentencePiece tokenizer from {sp_model}")
|
60 |
+
except Exception as e:
|
61 |
+
print(f"⚠️ Error loading tokenizer: {e}")
|
62 |
+
|
63 |
+
def save_tokenizer(self, save_dir="tokenizer/"):
|
64 |
+
"""Save tokenizer files to a directory."""
|
65 |
+
if not self.tokenizer:
|
66 |
+
print("⚠️ No tokenizer loaded to save!")
|
67 |
+
return
|
68 |
+
|
69 |
+
try:
|
70 |
+
os.makedirs(save_dir, exist_ok=True)
|
71 |
+
self.tokenizer.save_pretrained(save_dir)
|
72 |
+
if not self.hf_model: # Copy SentencePiece files
|
73 |
+
for ext in [".model", ".vocab"]:
|
74 |
+
src = f"{self.model_path}{ext}"
|
75 |
+
if os.path.exists(src):
|
76 |
+
os.system(f"cp {src} {save_dir}")
|
77 |
+
print(f"✅ Tokenizer saved to {save_dir}")
|
78 |
+
except Exception as e:
|
79 |
+
print(f"⚠️ Error saving tokenizer: {e}")
|
80 |
+
|
81 |
+
def tokenize_text(self, text, return_tensors=True):
|
82 |
+
"""Tokenize text and show both IDs and decoded output."""
|
83 |
+
if not self.tokenizer:
|
84 |
+
print("⚠️ No tokenizer initialized! Load or train one first.")
|
85 |
+
return None
|
86 |
+
|
87 |
+
try:
|
88 |
+
tokens = self.tokenizer(text, return_tensors="pt" if return_tensors else None)
|
89 |
+
ids = tokens["input_ids"] if return_tensors else tokens
|
90 |
+
decoded = self.tokenizer.decode(ids[0] if return_tensors else ids, skip_special_tokens=True)
|
91 |
+
print(f"🔹 Token IDs: {ids}")
|
92 |
+
print(f"🔹 Decoded: {decoded}")
|
93 |
+
return tokens
|
94 |
+
except Exception as e:
|
95 |
+
print(f"⚠️ Error tokenizing text: {e}")
|
96 |
+
return None
|
97 |
+
|
98 |
+
if __name__ == "__main__":
|
99 |
+
# Setup with Charm 15 context
|
100 |
+
tokenizer_setup = TokenizerSetup(
|
101 |
+
model_path="tokenizer",
|
102 |
+
model_type="bpe", # Matches your earlier BPE config
|
103 |
+
vocab_size=32000, # Matches Mistral/Charm 15
|
104 |
+
hf_model=None # Custom training; set to "mistralai/Mixtral-8x7B-Instruct-v0.1" for pretrained
|
105 |
+
)
|
106 |
+
|
107 |
+
# Train on Eclipse Corpuz (or other corpus)
|
108 |
+
input_file = "../datasets/eclipse_corpuz_1.1.txt" # Adjust to your dataset
|
109 |
+
if not os.path.exists(f"{tokenizer_setup.model_path}.model"):
|
110 |
+
tokenizer_setup.train_sentencepiece(input_file)
|
111 |
+
|
112 |
+
# Load tokenizer
|
113 |
+
tokenizer_setup.load_tokenizer()
|
114 |
+
|
115 |
+
# Save for Charm 15 use
|
116 |
+
tokenizer_setup.save_tokenizer("../finetuned_charm15/") # Match your training dir
|
117 |
+
|
118 |
+
# Test with sample
|
119 |
+
sample_text = "Charm 15 is an AI model optimized for deep learning and security."
|
120 |
+
tokenizer_setup.tokenize_text(sample_text)
|