Create finetune.py
Browse files- finetune.py +152 -0
finetune.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import argparse
|
3 |
+
import os
|
4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
5 |
+
from datasets import load_dataset
|
6 |
+
|
7 |
+
def parse_args():
|
8 |
+
parser = argparse.ArgumentParser(description="Fine-tune Charm 15 AI Model")
|
9 |
+
parser.add_argument("--model_name", type=str, default="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
10 |
+
help="Base model name or local path (default: Mixtral-8x7B)")
|
11 |
+
parser.add_argument("--dataset", type=str, required=True,
|
12 |
+
help="Path to training dataset (JSON or text file)")
|
13 |
+
parser.add_argument("--eval_dataset", type=str, default=None,
|
14 |
+
help="Path to optional validation dataset")
|
15 |
+
parser.add_argument("--epochs", type=int, default=3,
|
16 |
+
help="Number of training epochs")
|
17 |
+
parser.add_argument("--batch_size", type=int, default=1,
|
18 |
+
help="Per-device training batch size (lowered for GPU compatibility)")
|
19 |
+
parser.add_argument("--lr", type=float, default=5e-5,
|
20 |
+
help="Learning rate")
|
21 |
+
parser.add_argument("--output_dir", type=str, default="./finetuned_charm15",
|
22 |
+
help="Model save directory")
|
23 |
+
parser.add_argument("--max_length", type=int, default=512,
|
24 |
+
help="Max token length for training")
|
25 |
+
return parser.parse_args()
|
26 |
+
|
27 |
+
def tokenize_function(examples, tokenizer, max_length):
|
28 |
+
"""Tokenize dataset and prepare labels for causal LM."""
|
29 |
+
tokenized = tokenizer(
|
30 |
+
examples["text"],
|
31 |
+
padding="max_length",
|
32 |
+
truncation=True,
|
33 |
+
max_length=max_length,
|
34 |
+
return_tensors="pt"
|
35 |
+
)
|
36 |
+
tokenized["labels"] = tokenized["input_ids"].clone()
|
37 |
+
return tokenized
|
38 |
+
|
39 |
+
def main():
|
40 |
+
args = parse_args()
|
41 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
42 |
+
print(f"Using device: {device}")
|
43 |
+
|
44 |
+
# Ensure output directory exists
|
45 |
+
os.makedirs(args.output_dir, exist_ok=True)
|
46 |
+
os.makedirs("./logs", exist_ok=True)
|
47 |
+
|
48 |
+
# Load tokenizer
|
49 |
+
print(f"Loading tokenizer from {args.model_name}...")
|
50 |
+
try:
|
51 |
+
tokenizer = AutoTokenizer.from_pretrained(args.model_name)
|
52 |
+
if tokenizer.pad_token is None:
|
53 |
+
tokenizer.pad_token = tokenizer.eos_token
|
54 |
+
tokenizer.pad_token_id = tokenizer.eos_token_id
|
55 |
+
except Exception as e:
|
56 |
+
print(f"Error loading tokenizer: {e}")
|
57 |
+
exit(1)
|
58 |
+
|
59 |
+
# Load model with optimizations
|
60 |
+
print(f"Loading model {args.model_name}...")
|
61 |
+
try:
|
62 |
+
model = AutoModelForCausalLM.from_pretrained(
|
63 |
+
args.model_name,
|
64 |
+
torch_dtype=torch.bfloat16, # Efficient precision
|
65 |
+
device_map="auto", # Spread across GPU/CPU
|
66 |
+
low_cpu_mem_usage=True # Reduce RAM
|
67 |
+
).to(device)
|
68 |
+
except Exception as e:
|
69 |
+
print(f"Error loading model: {e}")
|
70 |
+
exit(1)
|
71 |
+
|
72 |
+
# Load dataset
|
73 |
+
print(f"Loading dataset from {args.dataset}...")
|
74 |
+
try:
|
75 |
+
if args.dataset.endswith(".json"):
|
76 |
+
dataset = load_dataset("json", data_files={"train": args.dataset})
|
77 |
+
else:
|
78 |
+
dataset = load_dataset("text", data_files={"train": args.dataset})
|
79 |
+
|
80 |
+
eval_dataset = None
|
81 |
+
if args.eval_dataset:
|
82 |
+
if args.eval_dataset.endswith(".json"):
|
83 |
+
eval_dataset = load_dataset("json", data_files={"train": args.eval_dataset})["train"]
|
84 |
+
else:
|
85 |
+
eval_dataset = load_dataset("text", data_files={"train": args.eval_dataset})["train"]
|
86 |
+
except Exception as e:
|
87 |
+
print(f"Error loading dataset: {e}")
|
88 |
+
exit(1)
|
89 |
+
|
90 |
+
# Tokenize datasets
|
91 |
+
print("Tokenizing dataset...")
|
92 |
+
train_dataset = dataset["train"].map(
|
93 |
+
lambda x: tokenize_function(x, tokenizer, args.max_length),
|
94 |
+
batched=True,
|
95 |
+
remove_columns=["text"]
|
96 |
+
)
|
97 |
+
eval_dataset = eval_dataset.map(
|
98 |
+
lambda x: tokenize_function(x, tokenizer, args.max_length),
|
99 |
+
batched=True,
|
100 |
+
remove_columns=["text"]
|
101 |
+
) if args.eval_dataset else None
|
102 |
+
|
103 |
+
# Training arguments
|
104 |
+
training_args = TrainingArguments(
|
105 |
+
output_dir=args.output_dir,
|
106 |
+
per_device_train_batch_size=args.batch_size,
|
107 |
+
per_device_eval_batch_size=args.batch_size,
|
108 |
+
num_train_epochs=args.epochs,
|
109 |
+
learning_rate=args.lr,
|
110 |
+
gradient_accumulation_steps=8, # Effective batch size = 8
|
111 |
+
bf16=True, # Match dtype
|
112 |
+
fp16=False,
|
113 |
+
save_total_limit=2,
|
114 |
+
save_steps=500,
|
115 |
+
logging_dir="./logs",
|
116 |
+
logging_steps=100,
|
117 |
+
report_to="none",
|
118 |
+
evaluation_strategy="epoch" if eval_dataset else "no",
|
119 |
+
save_strategy="epoch",
|
120 |
+
load_best_model_at_end=bool(eval_dataset),
|
121 |
+
metric_for_best_model="loss"
|
122 |
+
)
|
123 |
+
|
124 |
+
# Initialize Trainer
|
125 |
+
trainer = Trainer(
|
126 |
+
model=model,
|
127 |
+
args=training_args,
|
128 |
+
train_dataset=train_dataset,
|
129 |
+
eval_dataset=eval_dataset,
|
130 |
+
tokenizer=tokenizer
|
131 |
+
)
|
132 |
+
|
133 |
+
# Train
|
134 |
+
print("Starting fine-tuning...")
|
135 |
+
try:
|
136 |
+
trainer.train()
|
137 |
+
except RuntimeError as e:
|
138 |
+
print(f"Training failed: {e} (Try reducing batch_size or max_length)")
|
139 |
+
exit(1)
|
140 |
+
|
141 |
+
# Save
|
142 |
+
print(f"Saving fine-tuned model to {args.output_dir}")
|
143 |
+
trainer.save_model(args.output_dir)
|
144 |
+
tokenizer.save_pretrained(args.output_dir)
|
145 |
+
|
146 |
+
# Cleanup
|
147 |
+
del model
|
148 |
+
torch.cuda.empty_cache()
|
149 |
+
print("Training complete. Memory cleared.")
|
150 |
+
|
151 |
+
if __name__ == "__main__":
|
152 |
+
main()
|