Create train.py
Browse files
train.py
ADDED
@@ -0,0 +1,88 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArguments, Trainer
|
3 |
+
from datasets import load_dataset
|
4 |
+
import os
|
5 |
+
|
6 |
+
# Model and tokenizer setup
|
7 |
+
MODEL_NAME = "mistralai/Mixtral-8x7B-Instruct-v0.1" # Real Mixtral model
|
8 |
+
OUTPUT_DIR = "./mixtral_finetuned"
|
9 |
+
|
10 |
+
# Load tokenizer
|
11 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
12 |
+
tokenizer.pad_token = tokenizer.eos_token # Set pad token if missing
|
13 |
+
|
14 |
+
# Load model with memory optimizations
|
15 |
+
model = AutoModelForCausalLM.from_pretrained(
|
16 |
+
MODEL_NAME,
|
17 |
+
torch_dtype=torch.bfloat16, # Efficient precision
|
18 |
+
device_map="auto", # Auto-distribute across GPU/CPU
|
19 |
+
low_cpu_mem_usage=True # Minimize RAM usage
|
20 |
+
)
|
21 |
+
|
22 |
+
# Load dataset (local or predefined)
|
23 |
+
# Example: local text files; replace with your paths
|
24 |
+
dataset = load_dataset("text", data_files={"train": "train.txt", "validation": "val.txt"})
|
25 |
+
# Or use a Hugging Face dataset locally: dataset = load_dataset("wikitext", "wikitext-2-raw-v1")
|
26 |
+
|
27 |
+
# Tokenize dataset
|
28 |
+
def tokenize_function(examples):
|
29 |
+
tokenized = tokenizer(
|
30 |
+
examples["text"],
|
31 |
+
padding="max_length",
|
32 |
+
truncation=True,
|
33 |
+
max_length=512, # Adjustable; matches earlier intent
|
34 |
+
return_tensors="pt"
|
35 |
+
)
|
36 |
+
tokenized["labels"] = tokenized["input_ids"].clone() # Causal LM needs labels
|
37 |
+
return tokenized
|
38 |
+
|
39 |
+
tokenized_datasets = dataset.map(
|
40 |
+
tokenize_function,
|
41 |
+
batched=True,
|
42 |
+
remove_columns=["text"] # Save memory
|
43 |
+
)
|
44 |
+
|
45 |
+
# Split dataset
|
46 |
+
train_dataset = tokenized_datasets["train"]
|
47 |
+
eval_dataset = tokenized_datasets["validation"]
|
48 |
+
|
49 |
+
# Define training arguments
|
50 |
+
training_args = TrainingArguments(
|
51 |
+
output_dir=OUTPUT_DIR,
|
52 |
+
evaluation_strategy="epoch", # Eval each epoch
|
53 |
+
per_device_train_batch_size=2, # Adjust for your GPU
|
54 |
+
per_device_eval_batch_size=2,
|
55 |
+
num_train_epochs=3, # Default; tweak as needed
|
56 |
+
learning_rate=2e-5, # Safe for fine-tuning
|
57 |
+
weight_decay=0.01, # Regularization
|
58 |
+
gradient_accumulation_steps=4, # Effective batch size = 8
|
59 |
+
bf16=True, # Matches bfloat16 dtype
|
60 |
+
fp16=False, # Avoid if using bf16
|
61 |
+
save_strategy="epoch", # Save each epoch
|
62 |
+
save_total_limit=2, # Keep 2 latest checkpoints
|
63 |
+
logging_dir="./logs",
|
64 |
+
logging_steps=10,
|
65 |
+
load_best_model_at_end=True, # Load best based on eval loss
|
66 |
+
metric_for_best_model="loss",
|
67 |
+
report_to="none" # No external logging
|
68 |
+
)
|
69 |
+
|
70 |
+
# Initialize Trainer
|
71 |
+
trainer = Trainer(
|
72 |
+
model=model,
|
73 |
+
args=training_args,
|
74 |
+
train_dataset=train_dataset,
|
75 |
+
eval_dataset=eval_dataset,
|
76 |
+
)
|
77 |
+
|
78 |
+
# Train the model
|
79 |
+
trainer.train()
|
80 |
+
|
81 |
+
# Save locally
|
82 |
+
trainer.save_model(OUTPUT_DIR)
|
83 |
+
tokenizer.save_pretrained(OUTPUT_DIR)
|
84 |
+
|
85 |
+
# Clean up memory
|
86 |
+
del model
|
87 |
+
torch.cuda.empty_cache()
|
88 |
+
print(f"Model and tokenizer saved to {OUTPUT_DIR}")
|