File size: 4,463 Bytes
81f26d6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from typing import Optional, Dict, Any
import logging
import asyncio

# Configure logging
logging.basicConfig(level=logging.INFO, format="%(asctime)s - %(levelname)s - %(message)s")
logger = logging.getLogger(__name__)

class Charm15Chatbot:
    def __init__(
        self,
        model_path: str,
        device: Optional[str] = None,
        tokenizer_kwargs: Optional[Dict[str, Any]] = None,
        model_kwargs: Optional[Dict[str, Any]] = None,
    ):
        """
        Initialize the chatbot.

        Args:
            model_path (str): Path or name of the pre-trained model.
            device (str, optional): Device to run the model on (e.g., "cuda" or "cpu"). Defaults to "cuda" if available.
            tokenizer_kwargs (dict, optional): Additional arguments for the tokenizer.
            model_kwargs (dict, optional): Additional arguments for the model.
        """
        self.device = device or ("cuda" if torch.cuda.is_available() else "cpu")
        self.tokenizer_kwargs = tokenizer_kwargs or {}
        self.model_kwargs = model_kwargs or {}

        # Load tokenizer and model
        logger.info(f"Loading model and tokenizer from {model_path}...")
        self.tokenizer = AutoTokenizer.from_pretrained(model_path, **self.tokenizer_kwargs)
        self.model = AutoModelForCausalLM.from_pretrained(model_path, **self.model_kwargs).to(self.device)
        self.model.eval()
        logger.info("Model and tokenizer loaded successfully.")

    def generate_response(
        self,
        input_text: str,
        max_length: int = 512,
        temperature: float = 0.7,
        top_p: float = 0.9,
        top_k: Optional[int] = None,
        repetition_penalty: float = 1.0,
        **kwargs,
    ) -> str:
        """
        Generate a response to the input text.

        Args:
            input_text (str): The input prompt.
            max_length (int): Maximum length of the generated text.
            temperature (float): Sampling temperature (higher = more random).
            top_p (float): Top-p (nucleus) sampling.
            top_k (int): Top-k sampling.
            repetition_penalty (float): Penalty for repeating tokens.
            **kwargs: Additional arguments for model.generate().

        Returns:
            str: The generated response.
        """
        try:
            inputs = self.tokenizer(
                input_text,
                return_tensors="pt",
                truncation=True,
                max_length=1024,
            ).to(self.device)

            with torch.no_grad():
                output = self.model.generate(
                    **inputs,
                    max_length=max_length,
                    temperature=temperature,
                    top_p=top_p,
                    top_k=top_k,
                    repetition_penalty=repetition_penalty,
                    pad_token_id=self.tokenizer.eos_token_id,
                    **kwargs,
                )

            response = self.tokenizer.decode(output[0], skip_special_tokens=True)
            logger.info("Response generated successfully.")
            return response
        except Exception as e:
            logger.error(f"Error generating response: {e}")
            raise

    async def async_generate(
        self,
        input_text: str,
        max_length: int = 512,
        temperature: float = 0.7,
        top_p: float = 0.9,
        top_k: Optional[int] = None,
        repetition_penalty: float = 1.0,
        **kwargs,
    ) -> str:
        """
        Asynchronously generate a response to the input text.

        Args:
            input_text (str): The input prompt.
            max_length (int): Maximum length of the generated text.
            temperature (float): Sampling temperature (higher = more random).
            top_p (float): Top-p (nucleus) sampling.
            top_k (int): Top-k sampling.
            repetition_penalty (float): Penalty for repeating tokens.
            **kwargs: Additional arguments for model.generate().

        Returns:
            str: The generated response.
        """
        return await asyncio.to_thread(
            self.generate_response,
            input_text,
            max_length=max_length,
            temperature=temperature,
            top_p=top_p,
            top_k=top_k,
            repetition_penalty=repetition_penalty,
            **kwargs,
        )